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CHAPTER I
INTRODUCTION

A. Purpose of Investigation

Light propagating through the atmosphere undergoes bending due
to variations in the index of refraction. When this bending is
uniform one witnesses phenomena such as mirages [1] and the apparent
flattening of the sun as it approaches the horizon. If the index of
reflection is fluctuating randomly the phase and amplitude of the
light are perturbed in a random manner. Phase fluctuations give rise
to an uncertainty in the location of a radiating body [2]. This
behavior is exemplified by the "dancing" or "quivering" of the image
of a star as Seen through a telescope. Intensity fluctuations, or
scintillations [3] as they are commonly called, are typified by the
twinkling of stars or distant headlights.

By examining the temporal power spectrum of the scintillations
one can discern important properties of the medium through which the
light has propagated. With the ready availability of the laser it
is therefore natural that we be interested in the temporal scintil-
lation spectrum of a laser beam.

A realizable laser beam may not always have the perfect prop-
erties which analytical studies assume. The need therefore arises
to determine the effect upon its scintillation spectrum of a laser
beam containing a certain amount of deterministic degradation,
e.g., a beam partially blocked by dirt specks. We are concerned
herein with the temporal scintillation spectrum of just such a
"dirty" beam.

Within this work a contemporary technique currently appearing
in the literature is employed in deriving a very general but compact
mathematical expression for the scintillation spectrum. This ex-
pression, which is restricted to the weak turbulence regime, is
then applied to the analysis of several situations of great interest.

Specifically the analysis is directed toward description of the

effects of such phenomena as localized turbulence, off-axis de-
tectors, and the use of a laser beam which is blemished in a
deterministic sense. Spectra obtained under these conditions will
be shown to provide additional information about the propagation
medium.




This study was motivated by a desire to provide theoretical
support for experimentally obtained scintillation spectra. As
illustrated in Figure 1, these spectra were digitally calculated
from data obtained by propagating a laser beam over an approximately
one kilometer path between two aircraft flying abreast. The spectra
thus generated displayed a number of pecularities and in the course
of the effort to put this behavior on a firm theoretical basis a
number of heretofor unexplored phenomena were encountered.

— | Km -

Figure 1--Sketch of experimental situation.

The principal contribution of this effort 1ies in the develop-
ment of a simplified formula for the temporal scintillation spectrum
and its application to several important configurations which are
commonly encountered in practical situations. The problem attacked
in this dissertation is therefore a theoretical description of the
temporal scintillation spectrum of a "dirty" laser beam.

The general formalism presented here is also applicable to
arbitrary transmitter and receiver shapes such as the beam transmitted
from an unstable resonator or a Cassegrain telescope receiver or
transmitter.
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B. Perspective

Whenever an electromagnetic wave is propagated through the at-
mosphere it is perturbed in a random mauner. For radio frequency
waves this corruption is due to index of refraction variations caused
by humidity fluctuations within the atmosphere. At optical fre-
quencies the index of refraction variations are due primarily to
temperature fluctuations. Both humidity and temperature fluctu-
ations are caused directly or indirectly by radiant heating of the
earth and convective heating of the atmosphere in conjunction with
wind shears. The research effort described herein in aimed primarily
at predicting the effects of turbulent index fluctuations at optical
frequencies but may be generalized to longer wavelengths.

The refractive index field is composed of randomly:arrayed
eddies of various sizes and indices of refraction. These eddies
have sizes 2 such that %o < & < Lo where 2 and Lo are respectively
the inner and outer scales of turbulence. Mechanical energy is in-
jected by wind shears into the large scale sizes which then break
into smaller and smaller eddies through the phenomena of vortex
stretching[89]. The energy thus cascades into smaller and smaller
scale sizes until it is dissipated in the form of heat at scale sizes
on the order of the inner scale, %g.

If one assumes that the turbulent eddies are blown en masse
through the wave transverse to the propagation path, then what will
be observed at the receiver plane is simply the moving diffraction
patterns of eddies of various sizes and locations.

For short propagation paths (L < EE/A where A is the free-space
wavelength) the incident wave undergoes perturbations to its phase
only. As the path length is increased, amplitude fluctuations are
also introduced. When viewed by a square-law detector (e.g., the
eye or a photomultiplier) the resultant power (irradiance) fluctu-
ations are commonly referred to as scintillation.

.By using a detector (photomultiplier) to measure the variance
of the irradiance of a perturbed wavefront it is noticed that to
a point, as the path length or turbulance level increases, so does
the -irradiance variance. However for very strong turbulence and/or
long path lengths the variance is seen to peak or saturate [4],[5]
and to even decrease slightly [6]. This effect has attracted much
attention partly because people intuitively expected the variance
to increase without limit.

Within the weak turbulence regime (or for moderate propagation

lengths) the effects of index inhomogeneities can be closely apRroxi-
mated by the linear superposition of the interactions of the coherent

(unperturbed) wave with turbulent eddies of all sizes at all locations

- e 4 0t




between transmitter and receiver. This is a single scattering model.
Strong turbulence gives rise to multiple scatterings which manifest
themselves as the aforementioned saturation phenomenon. We shall be
concerned herein principaily with the weak turbulence model. However
where appropriate modifications will be pointed out which enable
generalization to the strong turbulence domain.

The temporal spectrum of the irradiance fluctuations could easily

have been measured instead of the variance of irradiance. It is just
this power spectrum in which we are interested.

C. Discussion of Previous Work

Since primordial man first turned his gaze toward the night-time
sky he has been intrigued by the phenomenon of scintillation. (Recall
the nursery rhyme which goes "Twinkle, twinkle, little star ....") It
seems natural then, that scintillation be a topic of research from
earliest times. Further, it is reasonable that the study of scintil-
lation have its roots in one of the oldest sciences, astronomy [7]. 1In
more recent times scintillation has been an important device for_passive
remote sensing, for example determining the velocity of the inter-
planetary solar wind [8,9], the ionospheric drift [10,11] or terrestrial
wind [12]. With the advent of the laser, scintillation has become
important within the realms of optical communication [13,14] and active
remote sensing [15,16,17,18,19].

One of the classical mathematical tools with which scintillation
is predicted, is known as the Method of Smooth Perturbations [20].
This technique, popularized by Tatarski [20], hypothesizes an iterative
solution (for weak turbulence) to the scalar wave equation for the
natural logarithm of the field. A great many authors have employed
this method in the study of (among other phenomena) scintillation.

The simplest problem related to scintillation which has been
attacked with the Method of Smooth Perturbations is the calculation of
the log-amplitude variance. This problem has been solved for plane
wave sources [21], spherical wave sources [22,23], and the more complex
finite beam (viz. gaussian beam) sources [24,25].

Another topic routinely of interest is the spatial spectrum (or its
inverse Fourier transform, the covariance) of the log-amplitude for
plane [26], spherical [22], and finite beam wave sources [24].

The next step in complexity is the calculation of temporal spectra
of, for example, angle of arrival [27,28,29], phase [30,31,32]. phase
difference [31,33,34] or irradiance [35,36,37,38,39]. The tervoral
scintillation spectrum for plane waves was examined by Tatarski[36].

An interesting feature of his development was that it accounted for a
finite receiver aperture. However, since the true plane wave is merely
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a mathematical abstraction, his analysis is applicable to only a small
class of problems [40].

An extension of Tatarski's method to the calculation of the spheri-
cal wave temporal scintillation spectrum was provided by Clifford [35].
In his evaluation he developed expressions for the asymptotic behavior
of both plane and spherical waves. Solution of the spherical wave
problem represented a significant advance in the theory because the
spherical wave could be closely approximated in practice, thus allowing
experimental verification.

The calculation of the temporal scintillation spectrum of a
practically realizable source (the laser) was provided by Ishimaru [39]
and later by Mironov, et al [37]. Both authors presented numerically
calculated spectra for a variety of laser beam configurations.

The Method of Smooth Perturbations, as it has been used in the

past is» however, extremely cumbersome when applied to an extended source.

Its use in the analysis of each of the aforementioned problems necessi-
tated solving the wave equation for a particular source field (plane,
spherical, gaussian, etc.).

A more modern approach is to not solve the wave equation for the
field directly, but rather for the Green's function for the particular
propagation path configuration. The receiver plane field is obtained
merely by convolving the Green's function with the incident field.

This extension of the Green's function technique to propagation within
an inhomogeneous medium is commonly referred to as the Extended Huygens-
Fresnel Principle [41]. It is perhaps paradoxical that the Green's
function technique (for propagation within a homogeneous medium) pre-
dates the Method of Smooth Perturbations [42].

The study with which we are concerned employs elements of both
the classical (Method of Smooth Perturbations) and the modern (Extended
Huygens-Fresnel Principle) techniques. Virtues of each method are
exploited to obtain an expression for the temporal scintillation spec-
trum of an arbitrary source field. This formula is much simpler yet
more’ general than those developed by Tatarski, Clifford, or Ishimaru.
In fact their results are special cases of our formula. This study
extends the results of Ishimaru and Mironov in that it accounts for an
arbitrary extended source and an arbitrarily located extended receiver
aperture.

A portion of our analysis deals with the effects of extended
receiver apertures and the ensuing "aperture averaging". This topic
has also been treated theoretically by Fried, et al 43] and experi-
mentally by Homstad, et al [44] and Dumphy and Kerr [45].

The evaluation of the temporal scintillation spectrum for a
gaussian beam with an off-axis detector represents a significant
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contribution to the body of knowledge. Previous authors have always
dealt with axial detectors.

Finally, use of our formula in the modeling of a dirty laser beam
and the, subsequent evaluation of the scintillation spectrum provides
an important description of a situation which is universally encounter-
ed experimentally, but rarely treated even qualitatively. The techni-
ques applied to the modeling of a dirty laser beam could also be
applied to the prediction of the scintillation spectrum of a laser
with cassegrain optics.

D. Qutline of Effort

Chapter II provides the bulk of the background plus the mathe-
matical foundation for the remainder of the research effort. The
development relies upon the extension of the familiar Huygens-Fresnel
diffraction integral to the problem of propagation within an inhomo-
geneous medium. Use of the Extended Huygens-Fresnel Integral results
in an expression for the temporal scintillation spectrum for an arbi-
trary source field in terms of the generalized spatio-temporal second
order statistical moments of a spherical wave. These moments which
are functions of separations within the transmitter plane, the receiver
plane, and time are then derived. With some easily justified approxi-
mations the expression for the spectrum undergoes tremendous simplifi-
cation. The final expression, which is very compact, has some very
interesting interpretations. A description of the final expression in
the context of a phase grating model of the atmosphere completes this
chapter.

The formula for the scintillation spectrum derived in Chapter II
is applied in Chapter III to the case of a clean gaussian beam source.
Results of the analysis are in terms of analytic formulae for the
asymptotes of the spectrum under a variety of conditions. Such con-
ditions include the case in which the detector is off-axis to the laser
beam, as illustrated in Figure 2, and the case in which the turbulence
is localized. In addition to asymptotic results, numerically calcu-
lated spectra are presented for typical instances.

In Chapter IV the "dirty" laser beam is studied. The dirty beam
is modeled as arising from the propagation of an initially unperturbed
laser beam through a window containing an imperfection and thence into
the atmosphere. This situation js illustrated in Figure 3. The window
imperfection is modeled as an axially located spot which slightly ‘
shifts the phase of the incident beam. It is demonstrated that this 1
specific arrangement displays characteristics of a much more general
situation. Within the development the phase object is approximated
by a truncated series of functions involving Gaussian-Hermite polyno-
mials. These functions are of particular importance because they
closely approximate the modes of a laser and because they are exact
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(within the paraxial approximation) eigenfunctions of the free space
wave operator. Because the polynomial series is truncated, a procedure
is demonstrated which optimizes the approximation.

The expression resulting from the modeling of a dirty laser beam
is then numerically evaluated for a variety of situations. As a result
of the analysis, the scintillation spectrum is shown to exhibit very
interesting and informative low frequency behavior.

The summary and conclusions are contained in Chapter V. Sug-

gestions are provided for future analytical as well as experimental
efforts.
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CHAPTER II
DERIVATION OF FUNDAMENTAL FORMULA

A. Introduction

This chapter is devoted to the derivation of an expression for
E the temporal scintillation spectrum of an arbitrary incident field.
3 The final formula obtained is the foundation on which the remainder
of the analysis rests.

Within the derivation use is made of the Extended Huygens-Fresnel
principle and the weak turbulence approximation. The final result is
a very simple and physically interpretable formula for the temporal
scintillation spectrum of an arbitrary source field. This formula,
which requires knowledge of the free-space receiver-plane field of
an unspecified extended source, also accounts for an extended receiver.

In Section B we employ the Extended Huygens-Fresnel Integral to
develop an expression for the scintillation spectrum in terms of the
second order spatio-temporal statistical moments of spherical waves.
These moments, (log-amplitude covariances, phase-1og-amplitude cross
_ covariances, and wave structure functions) which are functions of
- separation in the transmitter plane, separation in the receiver plane,
: and separation in time, are derived in Section C by use of the method
of smooth perturbations.

The results of the two previous sections are combined in Section D.
Use is then made (and justified) of the weak turbulence approximation.
By rearranging terms of the resulting formula we obtain a series of
diffraction integrals which are then performed symbolically to yield
the desired expression for the scintillation spectrum.

In Section E the various components of the final formula are
interpreted in the context of a phase screen model of the atmospheric
turbulence.

R T W N Lo PR R TN T LIS NS 1.

Finally Section F consists of a discussion and summary of the
chapter.
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B. Derivation of General Expression

for Scintillation Spectrum

This section is devoted to developing an expression for the tem-
poral scintillation spectrum in terms of the second order statistical
moments of a spherica? wave. The derivation is based upon use of the
Extended Huygens-Fresnel integral and employs standard mathematical
procedures currently employed in the literature.

We are interested in the situation in which an arbitrary unper-
turbed source field is incident (at z=0) upon a region (z>0) contain-
ing randomly varying index of refraction inhomogeneities. The field
then propagates through the inhomogeneous medium a distance L to a
receiver plane in which is located an arbitrary detector. To deter-
mine the receiver plane fields we propose to solve the scalar wave
equation

[v% + k%n?(R)IE(R) = 0 (1)

where the index of refraction n is a random function of space and k
is the free-space wavenumber (k = 2n/1). By defining a generalized
Green's function such that

[v2 + k2n2(R) J6(R,R") = - 4ns(|R-R|) (2)

it is easily shown (see Appendix A)[41] that the receiver plane field
may be expressed approximately as

e®) = & [ e(mR)EMT (3)

where the surface integration is carried out over the plane z=0 and
L is the distance between transmitter and receiver planes. In
Equation (3) we have denoted the three-dimensional vector by an upper
case letter and the two dimensional vector by a lower case letter.

We shall attempt to retain this convention throughout the remainder
of this work. Using the explicit expression for the generalized:
Gr$en's function (also discussed in Appendix A) Equation (3) may be
written

ikL(r 57 ririst
£(7}.t) = 5K [ aF e i i e (4)

N
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where L is the geometrical (free space) distance between the point r
in the transmitter plane and the point r' in the receiver plane and
p is a complex phase perturbation to the field of a spherical wave.
The variables of interest are illustrated in Figure 4.

.ﬁ\—\ ’A
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Figure 4--Variables appearing in Huygens-Fresnel
formula.

The preceding discussion aimed at solution of the wave equation
within an inhomogeneous medium encompasses the method commonly referred
to as the Extended Huygens-Fresnel technique. This topic is discussed
more fully in Appendix A.

Using Equation (4) we express the irradiance at r' as

i & 2 . _ . _ ik[L(ry,7])-L(rp,ry)]
I(rysty) = |E(r,';t-,)|2 = (f%f) Jdr, jdrz e ! o

riirist *(rpsryst
ev(n riity) + v*(rasrysty) E(F 4 ()

(5)

X

and the total received power as

12




P(ty) = [ drj w(FI(sty) (6)
where w is the receiver pupil function defined as

1; IF}I < D/2

w(ry) = o
0; |r3| >D/2

(7)

and D is the diameter of the receiver aperture. We have assumed the
right hand side of Equation (6) to be divided by unity impedance so
that the power, P, does indeed have the units of watts. Now under
the assumption of temporal (wide sense) stationarity, the temporal
scintillation spectrum is given by

Spla) = [ e G (m)ertor (8)

where C is the power covariance,

Colr) = <[P(ty) - <P(ty)>1[P(t,) - <P(tp)>]> (9)

i -l Gt

= t] - t5, and the angular brackets denote the ensemble average.

Equations (6), (8), and (9) yield

Splo) = |

where C; is the covariance of irradiance defined as

T dr elor Id?iw(?i) IdFéw(Fé) Cp(ry -r3st) (10)

CI(F}-FE;r) = <[I(F];t]) - <I(?ﬂ;t])>][I(F};t2) - <I(F};t2)>]>
(11-a)

or more simply

Cr{ri-rgsc) = <I(Fjst))1(Fsty)> - <I(rjity)><I(rhsty)>
(11-b)

13




Note that we have indicated the covariance of irradiance_to be simul-
taneously homogeneous in the receiver plane separation, ry-r5, and
stationary in time, t. This assumption will be justified later in
this chapter.

Use will now be made of Equation (5) to calculate the irradiance cor-
relation and mean irradiance as required in Equation (11-b).

The mean irradiance from Equation (2) is simply
2 ik[L(ry,r7) = L(rpsri)]
=y N 1°°1 235
ShTyaty)> = (z—L) fd‘ﬁ fd"z g

x E(F))E*(T,) <e%> (12)

where we have defined
g = w(rysr]sty) + v*(rasristy) . (13-a)

If we define y = x + iS, where S is the phase and X is commonly called
the log-amplitude then ¢ is given by

z = x(rysrsty) + 3S(rysrysty) + x(rpsrysty) - iS(r,srysty) ik

The notation in the derivation to follow is greatly simplified by ]
adopting the convention 3

z = (X7 + Xo17) + (S99 - So19) (13-c)

where the subscripts refer to respectively a point, ry or rp, in the .
transmitter plane, a point, ri or rb, in the receiver plane, and a
time, t; or t2.

Under the assumption that the complex phase perturbation is normally
distributed [46] we have [47]

%Ug +

<e%s ¢ 4 (14)
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where o and up are respectively the variance and mean of ¢z. The
mean is
p; = 2<X> s (]5-&)

It is easily demonstrated by conservation of energy arguments [48]
that the mean must be the negative of the variance;

u, = 2<X> = -2CX(0;O;0) - (15-b)

For an infinite plane wave, relation (15-b) is identically true be-
cause the average irradiance at a point in the receiver plane must be
independent of turbulence strength (energy must be conserved). For

a spherical wave propagating through weak turbulence, energy is not
actually diffracted out of the beam but merely instantaneously redis-
tributed. Therefore, for weak turbulence, the mean irradiance of a
spherical wave should also be independent of turbulence strength.

The variance of z is given by

2

o
4

<Ly = 90 * xp17 = <x*) + (8197 - Sp17)1%

2 CX(O;O;O) + 2 cx(?}-Fégo;o) (16-a)

18<<(S979 = Sa11)> + 12<0qpq *+ %17 (S99 - S2ny)>
- Dg(ry-r,30;0) Lo,

where DS is the phase structure function defined as

Dg(o3p'5t) = 2[Cg(03050) - Cglpsp'st)] (16-c)

and we have assumed simultaneous homogeneity in both the transmitter
plane separation, p, and receiver plane separation, o', and station-
arity in the time separation, r. This assumption of simultaneous
homogeneity will be justified in a later section.

: The imaginary terms on the right hand side of Equation (16-b) are
1dent1ca11y zero. This can be verified by 1nterchanging the po1nts r
and rp in the transmitter plane thus introducing a sign change in these :
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terms. However by isotropy, this interchange should produce no sign
change. Therefore the imaginary terms are zero and Equations (14),
(15-b) and (16-b) yield

-%Ds(ry-r7;0;0) - r1-r2;0;
<eb> = ¢ S(r] r2 ) liox(f'] r2i0:0) (17-a)

or
° ~%Dy(r1-ry30;0)
e

<e°’> =

(17-b)
where Dy is the "wave" structure function [48] defined simply as the
sum of the phase and log-amplitude structure functions.

The mean irradiance term in Equation (11-b) is then finally
<I(Fstqy)><I(Tost)> = --k—4 dry |dry [dry |dF,
1Y 2it2 al ry Jdrz |dr3 |drg

 E(F )ER(PE(R)Er(Fa) eik[L(r],r-i)-L(rz,r]')+L(r3,ré)-L(F4.Fé)]

e-’s[D,q(F]-Fz;O;O) + Dy(ry-rg:0;0)]

X (18)

Similarly the correlation of irradiance in Equation (11-b) is
given by

<I(Fy3t))1(Fst,)> = (2§'~.)4 de] Isz [dF3 Idﬂ

T a T o el e i M e

x <eb> (19-a)
where

E = "(?] ;Fi St] )"’W*(Fz ,F-" ;t] )"‘W(Fa;Fé:tz)*"’*(F‘sFé;tz) (19-b)




By the previously adopted notation we have

£ = (X117 + X211 + X322 + Xg22) + 1(Sy17 - S217 + S322 - S422) -

(20)
Reapplication of Equation (14) to calculate the mean of exp(g)-
requires the calculation of the mean, ug, and the variance, of, of &.

Again, conservation of energy [48] requires that the mean be equal to
the negative of the variance;

b = 4<X> = -4 C,(0;050) (21)

The variance is

i‘ ZEfytfytfytty el |
i‘ where ;
j_ f] = <(X]]] - <x> + xZ-” - <x> + X322 - <x> + X422 - <x>)2> ”
(22-b)
: fa = -18 «><(S111 - Sany + S322 - Sgp2)> ) |
A
; f3 = 92 <% xo11 * x322 * x422)(S117 - Sa11 *+ S322 - Saz2)>
g (22-d)
f |
and |
fg = - <(S77 - Sp11 + S3z2 - Sg22)% (22-e) 1

The term f] is easily shown to be

17




fy = 4 C,(050;0) + 2 Cy(ry-rp;050) + 2 C,(r3-74;030)
+2 cx(F"I'F3;F1'Fé;~t'I't2) L - CX(F]-F4;F1-Fé;t] -tp)
+ 2 €, (Fpmrgsvi-Thity-ty) + 2 C,(vp-rgivi-risty-ty) . (23)

Term f, is identically zero because of stationarity and term f3 with
isotropy arguments similar to those employed previously is given by

f3 = 12[<(S322 - S422) (X111 + X211)>
+ <(S1171 - S211) (X322 + X422)>]
(24-a)
f3 = i4[cxs(F-l'F3;F-i"Fé;t]'tz) i st(Fz‘F43F'i'Fé;t]‘t2)] s (24 b)

where st is the cross-covariance between phase and log-amplitude.

Use of the identity
(a-b+c-d)2 = (a-b)2 + (c-d)? + (a-d)?
+ (b-c)2 - (a-c)2 - (b-d)? (25)

gives for the remaining term in Equation (22-a)

f4 = <[<(S117 - Sz + <(S3z2 - Saz2)®> * <(s111 - Saz0)®>

+ <(Sp17 - S322)%> - <(S111 - S322)%> - <(S11 - S422)%>]
(26-a)

or

18
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fy = -[Dg(ry-r»3050) + Dg(ry-r,3030) + Dg(ry-rysry-rast;-t,)

+ D5 (1ry-rairy-raosty=t,y) = Dg(ry-rasr)-rasty-t,)
- Ds(?é-?a;?}-FE;t]-tz)] (26-b)
Finally, combining Equations (19) through (26) gives
<e®> = exp {; %{Dw(F}-Fé;o;o) + Dy(r3-1430;0)

Dw(F=rasri-rasty=ty) - Dylrp-rgiri-raity-ty)]

*

Z[CX(F] -F3 ;Fi -Fé ity -tp) + Cx (Fz-?q_;?‘l -Fé;t] -t2)

+

i st(F]-F3;-Y‘-1-Fé;t'|-t2) -1 st(Fz-F4;F'|-Fé;t]-t2)]} .
(27)

The optical distance term in Equations (18) and (19-a) is

ikL

Tk[L(ryarq) = L(rp,1q) + L(ry,Tp) - L(rgsr3)] - (28-a)
Referring to Figure 5 it is seen that

ikL = ik[(L2+|7y-F12)% - (L2+|7p-7|2)%
+ (24|75 2% - (L2+|7pmp 28 (28-b)

Invoking the paraxial ray approximation (lF}-F}I << | A~i,j) we obtain

ik ik PR o i . gt
ikl =20 [Im-ri| - |rp-rj| + |rg-r3| - |rg-r3l ]

ooy
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Figure 5--Statistical moment vector arguments.

We now obtain by combining Equations (10), (11), (18), (19-a),

(27), and (28-c) the basic expression for the temporal irradiance
spectrum;

4
Sple) = (2%:) [. dr e-iuT IdF]'H(F]') IdFéU(Fé)
X IdF] Isz IdF3 Idﬂ E(ry JE*(rp)E(r3)E* ()
2 LInrj12 - Iy

X H(F] oF2.F3pF4;Fi .Fé;'l’) (29") y

where
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H = exp {} %{Du(?}-?é;O;O) + Dy(ry-ry30;0)
+ Dy(Fy=rgsry-riic) + Dy(rp-rairi-rjic)
- Dy(ry=r3srj-rasc) = Dy(ro-rgsri-risc)]
+ 2[Cx(Fi-F§;F}-F};r) + Cx(Fé-F;;F}-F};r)
+ 1 G (Fy-TyiF} Thit) = 1 cxs(rz-a;ri-?é;f)]}

- exp {'%[DH(F]‘FZ;O;O) + W(F3'F4;0;0)]} . (Zg'b)

At this point it may appear that the spectrum is not real as it
should be. This fear may be removed by manipulating the dummy vari- _
ables in Eqs. (29). Specifically by interchanging ry and rq, rp and r3;
ry and rp; and setting t=-t the right hand side of Eq. (29) appears to
h;ve been conjugated. However since the left hand side is unchanged,
the spectrum S is equal to its complex conjugate, i.e., it is real.

Equations (29) are the final result of this section. The particu-
lar form of the transfer function H is important because at least one
group of workers [49] has found that for very strong turbulence, the
behavior of the H function is dominated by that of the structure
functions. That is, the covariances in Equation (29-b) may be neglected.
Further, under certain circumstances (on-axis point detector), approxi-
mate closed-form expressions for the wave structure functions may be
found. For this instance it would be possible to calculate the temporal
scintillation spectrum under saturation conditions. This topic seems a
fertile area for further research.

. 'We have in this section derived an expression, in terms .of the
second order moments of a spherical wave, for the temporal scintilla-
tion spectrum of an arbitrary field source. Use was made of the Extended
Huygens-Fresnel integral which expresses the receiver plane field as
the convolution of the trandmitter plane field with a Green's function
which has been generalized to propagation within an inhomogeneous med-
jum. With standard mathematical procedures and assumptions treated
extensively in the literature we arrive at the desired formula expressed
in Equations (29).
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Finally, approximations were discussed which may enable the use
of the final expression to calculate the scintillation spectrum within
the saturation regime.

The next section is devoted to a derivation of the statistical
moments required by Equation (29).

C. Derivation of Statistical Moments

We now face the task of deriving expressions for the statistical
functions required by Equation (29-b§ of the previous section. Use
will be made of the method of smooth perturbations [2] which is some-
times referred to as the Rytov method [50,51]. Since this method is
well known, only the salient features of the derivations are presented
within this section. The expressions for the statistical moments
which are developed within this section represent generalizations of
expressions currently available in the literature.

The method of smooth perturbations relies upon the expression of
the field as [2]

£'=¢e M0 (30-a)

where

- ﬁnm - <n(R)>1%

is the R.M.S. variation in the index of refraction.

Typically y is on the order of 1076 [41]. By inserting E from Equation
(30-a) in the scalar wave equation and equating like powers of y one
arrives at an infinite series of linear constant coefficient (Recall
that the wave_eguation within an inhomogeneous medium has the variable
coefficient n2(R).) differential equations which are easily solved by
the Green's function technique. The solutions of these differential
equations are commonly denoted as y, and are given by

& W
Yo = e, : (31)

Obviously this results in the field being given by
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T
E=en=0 " : (32)

Now if we define

3 E = AelS = tnAiS (33)
and denote
. LnA, + iS, (34)
we see that
ln(A/Ao)H'(S-SO) nZ] ¥n
e = e (35)
The log-amplitude and phase perturbations which are denoted
respectively as
x = 2n(A/A;) (36-a)
and
Sy = S-S, (36-b)
are then to first order smallness of vy;
: x = Relyy) (37-a)
F and
S = Im{yp} : (37-b)

Tatarski [52] gives for the first perturbation to the complex phase

2 (KRR gR)
'ﬁ| =k e ER — %
v (R') = 5= I———'ﬁ.i.l £ nq (R)dR (38-a)
23
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where |
n(R) = n(R) - <n(R)> (38-b)

and the integration is carried out over the scattering volume denoted
by ¥. Fiqure 6 illustrates the variables used in Equation (38-a).

Ml 2

R'= LZ+F =(x),y,.L)

fi = (xi l")

R =(x,y,2)

Figure 6--Green's function variables.

-v For the spherical wave fields

ik|R-ry | ik|R' -7 |
oe Sl Ee :
E(R) = °———— and E(R") = L (39)
IW-P'II IR'-I"-i'

Equation (38-a) becomes
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D = et = k2 = =
¥ (R'5t) = yy(rst) = 5 I dR nq(R;t)
v

—, ik[|R'-R|+|R-r;|-|R"-r;]|]
R, | KR RIS IR |- [R5y
x — — — —
IR'ril IR"RI
where we have indicated explicitly the time dependent behavior of ny.
This time dependence arises because we assume the wind to be blowing -
the index inhomogeneities across the propagation path.

(40)

Utilization of the paraxial approximations

i (x-x;)2+(y-y;)? . j

i
3 (Xi-xi)2+(yi-yi)2

IR*-ryl = L 2

(x}-x)2+(y{-y)?
(-2) + gty @)

[R*-R]

allows Equation (40) to be written

v (ryst) = %;-J:dz (%)(I%;) Iiﬂdxfjmdy n(xsy,2;5t)

(x§02y30?  (xex)2oly-y)? (x§x) 4 (vxy)
x expyik 2(L-2) + 57 - iR .

(42) :

In Equation (42) the magnification terms have been approximated by the
first term of their Taylor's series expansions:
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To examine Equation (42) in the spatial spectral domain we make
use of the Fourier-Stieltjes expansions [53]

(43)

T i(kix+cly)
ny(x,y,25t) = ” e T dv(xi,xé,z;t) (44-a)

-0

VA @ i(K. '+K' l)
nst) = [[ e TV ot sepalit) (44-b)

so that

I} ei(Kixi+xéyi) do (3 axpslit) = %; J:dz (%éf)fjmdx It“dy
I"I" ei(nix+|<éy)

X dv(xi,xé,z;t)

R (xi-X)2+(yi-y)2 1 (X-xi)2+(y-yi)2 : (xi-xi)‘z«‘(yi-yi)2 1 .
2(L-2) 22 2L J
(45)

In Appendix B it is demonstrated that inversion of Equation (45)
y{eIdshfor the spatial spectrum of the first perturbation to the com-
plex phase;
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de(kq,%,,L5t) = ik " (L L st
'lﬂ(zs ’ » odZdV z K]. Z KZ’z’

X exp{i [L;z FiK - Loz _IZ._KZ] , (46)

where v is the spatial spectrum of the index of refraction fluctuations.
Since the expansion of Equation (44-b) takes place in the receiver
plane, the variables kj and xp correspond to spatial scales within the
receiver plane.

Because, by definition, the log-amplitude, X, is real, it is
easily demonstrated [54] that (to the first order smallness in y)

)
X - <x> > E{dO(K],K ,Lit) + dO*(-K].PKZoL;t)]

= da(kq,kp,L5t) X (47)

2

where F indicates the two dimensional spatial Fourier-Stieltjes trans-
form.

Using the_fact that the index of refraction field is real (thus
requiring dv(-k,z;t) = dv*(k,z;t)), Equations (46) and (47) give

L Uez) 7.5
s¢) = k| dzdv(t e, L z-t)e Eaie,
da(K1’K2,L,t) A ” Z v z K]Q Z KZ’ 9
sin [L Loz Kz]. (48)

Similarly, to the first approximation, the phase fluctuation is
given by

F
S ++-%T [do(xyskp,L5t)-do* (=ky ,=kp,L5t)]

E dQ("]aKZ’L;t) (49)
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which is easily shown to give

L r.-K
¢ & L L 5 4 1
d¢(K],K23L9t) i kjo dzdv (‘z' K]’ E Kz,zst)e

cos[th;z KZJ. (50)

As indicated in Equations (47) and (49) we have made use of the
Fourier-Stieltjes expansions of the log-amplitude and phase;

ST, ® (ke X3+K,yq)
x(ri;ri;t) -<x> = JJ e1 E1 N dai(n],xz,L;t) (51a)

and

T Ass L i(K xl+Ky')
S](ri;ri;t) = JJ g 21

d¢i(K],K2,L;t) (51b)

where the subscript i on the spectra denotes the source point ?}.

Now the time delayed log-amplitude and phase are given by

vio i(kx3+k,y)5)
X(F5irpstie) - <o = IJ s o s b el

and

® (kX +K,Y )

5](?5;F};t+t) = JJ

Introduction of Taylor's frozen-turbulence hypothesis [55] which says
eddies do not change shape in the time it takes them to blow through
the propagation path,

n](F.z;t+t) = n](?lV}.z;t). (53)

where v = (x,y) and v is the component of the wind velocity transverse -

to the propagation path, results in the spectrum of Equation (52a)
being given by

28
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L
daj(K]usaL;t+T) = kJo dzdv (!Z: K]: %KZDZ;t) (54)

X e e

HL-2)< o L = =
ET S & AL AT
# sin[L L-z Kz].

z J
Y4

The expression for the phase spectrum is identical except the sin
function is replaced by a cos function.

Since subsequent derivations for the desired statistical quanti-
ties are all similar, we will treat explicitly only the log-amplitude
covariance and state without proof expressions for the phase and
phase-log-amplitude covariances and the wave structure functions.

The log-amplitude covariance defined as
Cx(ri-rj;ri-rz;r) = (55)
<Ix(rysrysty) - <ellx(ryirgsty) -<c>

is, from Equations (51a) and (52a),

Cy(ry-ryiry-rai) = (56)

Koy -i?"-ré
II 3 e II E e <dai(K],KZ,L;t)dag(K],KZ,L;t+r)> 2

With Equations (48) and (54) the covariance is

|
i
!




St

2 L L L(L'Z]) 2 L(L'Zz) 2
x k J dz]J d22 $in | ppz— < |sin | 513 K (57)
o 0 1 2
X exp 2 Piio S r.-x' + it =— «'.v
1 2 2

x<d\){——- K

L L
s273t )d Kq KoaZost]? s
& ] 235 :) ¥ ( z, e Zp 2702 )

The assumption of wide-sense stationarity of the turbulence
provides the (stat1stica1) orthogonality of the index spectra ex-
pressed as [56

B {ghs i
‘d‘("‘ 2’21’t)°‘" (g s 557 KpsZps )

2n 2
- L L [} 1 L e L ] L L ]
i (z] (zé) dK1dK2dK1dK26(z! 1, K])a(;] 2" z, Ké) (58)

L L
i Fn(il“ il ’21'22')’

where F, is the two-dimensional power spectrum of the index of
refraction field.

Combining Equations (57) and (58), making the changes of
variables

| Cll
uy = 2 K} and u, = Ko (59)

and performing the integrations over uj and up results in

O b A e Al A v o s
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oy = k[ @[ a, (60)

= 0 0

2kL

S TN o WRRRE St -2 . Rez.)
o Tv+(L—]ri°L_2r')+[ o SR

where we have dropped the primes on the spatial frequencies.

zy(L-24) (L-2,)
X Fn('(] 9"2’|Z]"22|) sin [_—]—Zl_(l._l K‘z] sin [—2'——-2—- Kz]

Recall that in Equation (46) the spatial frequencies correspond
to scale sizas at the receiver. However the changes of variables in
Equations (59) produce in Equation (60), spatial frequencies k cor-
responding to spatial inhomogenieties within the medium. This is an

Zmpgrtant distinction for the subsequent manipulation of Equation
60).

We shall now proceed to simplify the expression for the log-
amplitude covariance. The method will make use of a sum and dif-

ference change of (path integration) variables and several order-
of-magnitude arguments.

The kappa integrand of Equation (60) is of the form

L L
dz J 42, Blx,24i2,), (61)
Jo 1 o 2 1772
which upon changing to sum and difference coordinates

2 4
o
o SRS ST

z +0p/2

(62)

D=Z-|-22 E) 22=Z"p/2

yields
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L L L/2 22
I dz]J dz, G(t,z],zz) = I dzJ do G(x,z+p/2,2-p/2)
o o o -2z
(63a)
L 2(L-2)
+ J dz I do G(x,z+p/2, z-p/2),
L/2 -2(L-2)
where the G function is given by
6(x,240/2,2-0/2) = F, (<150, 100 )i ™"
(63b)

3 sin[(zwéiz(L-z-oIZ) Kz]sin[gz-pézm.-zwz) Kz]

X exp{ii_-.E . [(z+p/2)?q-(z-p/2)?5+(L-z-p/2)?}-(L-z+p/2)?3{}

Using the trigonometric identity for the product of two cosines and
factoring the exponents gives for the G function

6(x,240/2,2-0/2) = Fy (x:%p,l0])

xexp[i"[ GEANL -f)(?i-FjHrVJ} (64)
el ] o s 2 )

év i '2_ [(r]+r2) (r.l'"' )]

X

For an isotropic field, fluctuations separated a distance p
are correlated only by index of refraction inhomogenieties of size
£ such that [57]

px2 (65)

Since the dimension % corresponds to a spatial frequency
L = 2n/x,
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B the two dimensional index of refraction spectrum Fn is markedly
- different from zero only for

p X 2m/x (66a)

or

<

Kp & 2w, (66b)

Within the region of significance of Fn’ the argument of the
first cos function in Equation (64) is

o 46222) 2 5 1 y(1-2z/1)c < w2 (67)
. ] - 0

where %5 is the inner scale of turbulence (typically £ ~10'3-10'2m).
Because the wavelength at optical frequencies (A¥10-6m) is much smaller
than the inner scale, we may let

cos [o %"(TZZ)- Kz]% : 8 (68)

Also within the aforementioned region

o LET-GpTl < T IEF)-Gerpl. i

If we restrict our attention to lateral distances from the propa-
gation axis much smaller than the range - the paraxial approximation
has already required this - we can allow

e%% % [r )= (Fy+rs)] i) bt
With the preceding approximations we now obtain for the in-
tegrand of Equation (63a),
G(x,z+0/2, 2-0/2) = Fn(r],Kz,loI)sin2 [f L-z) 2 _ 15%%3]
X exp{ir - [f (rj-Tp) + (1 - {-) (Fy-) + rﬂ} : (n)
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Finally, the log-amplitude covariance in Equation (60) is given

by
- 1/2 22
-r;sri-ra;t) = 2k°L d d dp G (k,2+pL/2,2-pL/2
Cx(ri ryjsri-ra 1) II K {IO z I b f x(x z+pl/ olL/2)
1 2(1-2)
+ J dz J dp Gx(x,z*pL/Z.Z-pLIZ) "
172 )0
(72-a)
where
2
Gy = Fp(xq »Kspl) sin? [z ;'-(z L 2. %Eﬂ)—]
x exp{ik ° [z(?}-?}) + (l-z)(F}-FS) + ]}, (72-b)

and we have replaced the z variable of integration by z/L.
It is easily demonstrated, using arguments identical to the pre-

ceding, that the phase covariance and phase-log-amplitude cross-
covariance are given respectively by

o S ee  EIHE o
Cs(FyTysTj-Tpin) = 2L [ Io dz Io do Gg(k,z+oL/2,2-pL/2)

-00

1 2(1-2)
+ J dz Jo dp GS(K,Z'!'pL/Z,Z-pL/Z)} s

1/2
(73-a)
where
| g 2
6 = F(kqaxpepl) cos? [Z Lk 2. Ligﬁl—]
x exp{ix * [z(r{-r}) + (l-z)(Fﬁ-Fj) + 1v]} . (73-b)
and
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el S g i 29 £
st(ri-rj;ri-ré;r) = k'L II dk

/2 2z
{j dz Io do 6,5 (x,z+pL/2,2-pL/2)
1
+ J]

’ lz ’

where

Gys = Fn(‘l'”stL)Sin [EilillL_KZ . L‘KEIZJ

x exp{ix ° [z(?ﬂ-?}) + (l-z)(F}-F&) + 1v]} . (74-b)

The wave structure function defined as

Dy(ey3p2st) = 2[C,(0;0;0) + C5(050;0)

- C,(0y30,31) = Cgpyippst)] (75)

is from Equations (72) and (73),

Dy (rj-rysri-riit) = 4k2L2ﬁ dx | i

-C0

X dz dp ks2+pl/2,z-pL/2
0 0 Gw

1 2(1-2)
+ I dz I dp GN(K,Z+pL/2.Z-pL/2)}» 3 (76-a)
1/2 0 5

where
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Gy = Fplkyax2,0L)

g {] : ei?- [z(?,'-Fé)'r(l'z)(Fi'Fj)*“T-'} (76-b)

Equations (72) through (76) constitute the desired results of
this section. In deriving these expressions, we have made no assump-
tions involving the size of the outer scale of turbulence, L,. The
literature abounds with expressions for the log-amplitude ang phase
covariances and the phase-log-amplitude cross-covariance for zero time
lag (v=0) [58,59] and/or axial receiver plape points (r{=r2=0) [60?
or transmitter plane points (ri=r =0) [25].?615,562]. Howevers al
of these derivations make use of {he assumption (usually implicit)
that the outer scale is much shorter than the range. We shall demon-
strate that, for our purposes, no such assumption is necessary.

D. Reduction of Expression for Spectrum

In this section the results of the two preceding sections are
combined. Some simplifying assumptions and observations are then
made which tremendously reduce the complexity of the expression for
the scintillation spectrum.

Our procedure is to first make the weak turbulence approximation
(which we quantify) to simplify the expression for the H function of !
Equation (29-b). Then by employing the expressions derived in the
previous section for the required statistical moments and symbolic-

ally performing a number of diffraction integrals we arrive at the
final expression.

The H function of Equation (29b) is given by
T pasa ™ u (77-a)
where

@ = J [0, (Fy-3050) +D,(F3-F43050)] (77-b) |

and




B = - 7 [O(FyTyiFi{-Fyit) + Oy (Fp-FiFy-Tpiv)

-D"(F.' —F3 ;F]' -Fé T) - D, (7"2-?4 ;Fi -Fz' ;1))
+ Z[Cx (F«' -Fs ;F]' -Fé 3T) + Cx (FZ-F4 ;F.i -Fé 1)
+ iCxS(Fﬁ-Fé;?ﬂ-F};r) - iCyg(ra-Ty3r]-r3;51)] . (77-c)
Under the weak turbulence approximation we assume that
lal, [8] << (78)

so that we need only keep the first two terms of the Taylor's series
expansions of exp(-a) and exp(8);

H% 1-(a-8) - (1-a) = 8. . (79)

In Appendix C we delineate the conditions under which we are justified
in making this approximation. For a von K{rmdn index of refraction
spectrum these conditions are

5/3
o < 546 2 KeL(og5"% + 030°) << 1
and
8 < .496 ¢2 k7/611/6 1

where

From the results of the previous section (Equations (72)
:hrough (76)) we see that H (Equation (29)) is given approximately
Y




H= 2k2L2ﬂ° de {J;/Zdz ﬁde + I:/Zdz Iz(]-Z)dp} Fn(K].KstL)

ik-[2(ry-r3)+(1-2) (r;-r4 )41
3 {.] o, [2(r]-r5)+(1-2) (r}-14)+1v]

ik [2(F]-73)+61-2) (Fp-r3)+1V]
e

i ei?-[z(F]'-Fé)f(l-Z)(F]-F3)+Tﬂ

s ei?-[z(Fi-Fé)+(1-z)(F_,_-F4)+rV]

+ 2sin(y) eiz}[z(F}'F})+(]'z)(FH'F5)+TVJ

123[2(F}-F})+(1—z)(Fé-?h)+17]
+ e

+ isin(2y) [ei;‘[Z(Fi -r3)+(1-z) (ry -F:3)+T;]

i [2(v -Fé)+(1-z)(?2-F4)+1ﬂ:|}

2
-2)L 2 _ L(xp)
e - (aesh)

and we have adopted an operator notation for the p and z integrals.
By employing the Euler idertities for the trigonometric functions it
can easily be shown that

i ¥ ]/2 2z 1 2(-'_2) c
-2 ([
=22 [[ b {Io dz Io do + I]/Zdz [0 dp] F leyegathl
L g [""1)?'(F1-F4> H-2)REpry)

e + e

-0
X e

(81)

i (]-Z);‘ (F‘l -F3)-12‘Y 1(]"2 );‘ (Fz-F4)+1 ZYJ
e “ie .




This expression can be factored to yield

= 222 [T d?{[llzdz fzzdo + f:/zdz fz(]-z)dp} Fp(kyskpa0L)

L]

=
}

ice[z (F']-F'Z)HVJ
e

X (e -8

-i(1-2)k-ry+i
. [e i(1-z)kerg+iy (s2)

-i(1-z)?-F3-iy]

With Equation (82) plus the expression for the spectrum in terms
of the H function (Equation (29-a)) we have

Splu) = 2kPL2 E v e luT JdF]'w(F]') JdFéW(Fé)

1/2 2z 1 2(1-2)
J dz J + l dz [ dp Fn(K],Kz,pL)
0 0 1/2 0

T
b
ey
— 8
(=8
A

: ik [z(r}-rs)+v]
E 5 A y S Ay

. 2 2
i ik r1m =
( dFl I drp E(ry)E*(rp) e?T“"l ril -lrp-ril ]

[1 -z)x-r] iy 1’(1-z)?-?-'2+1‘y] }
-e

15| 2-)7y-r5|2
> ( 2L, d"s r dry E(v3)E*(ry) e2L [|73-3]2-]74-7512)

[ i(]'Z)K'r‘4+IY 'i(]'Z)E'F3-iyJ}
= ¢

(83)
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If we look only at the ry,rp integrals we observe that they can

be written in the form
ik o= . |= L(1-2) —
PR Rl e ’I{"?'“l ["1' ‘LE“)'K]}
71';[‘ e dY‘]E(Y‘]) e
dr E*(T,) e 2L

21K 5.2 o= =,
: I (r2 2r2 r])

<dk ] 2 - [_. L(1-z _]}
ro=2r,° |rq + K
x [drjEx(7y) e—ﬂ-{ Rk LY ; (84)

Now recall the formula for the Fresnel diffraction integral;

(R ol =g
PRGESRE. | R (r-2r_-r+r€)

E(F) = pk e’k IdrsE(rs) e e s (85)
Comparing Equations (84) and (85) we observe that the r{ and T,
integrations can be performed symbolically to give

2

—'ikIF._ L(]'Z) T<' 3

L P 1 e E(;]. _L(-z ;)]
k
[ ik 2
r X
x [ M E*(ry )-1

¥ by 2

=ik .2 1 T ik lF.+L1-z =

e e 2L g [et

x E*(Fi s 1022 :)] . (86)
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where it is to be understood that the fields are the free-space
receiver plane fields. It may easily be verified that the r3 and

l',w’,,.v-,,“ -

ra integrations yield the conjugate of this expression with the vari-
able r{ replaced by rj. With these simplifications Equation (83)

becomes
12 22 1 2(1-2) T
5p(u) = 2412 I dz J o J dz I P dex
o Jo 172 Jo )
x Fp(ksx0s0L) I_w dt e'IT(m-K'V)
aad — -, -i(1-2)2L«?
S s iZK'ri -'i‘y"'i(]'Z)K-r-i 7K
X 'Idriw(ri)e e e
x g7 - '-'-“—kz)-E) E*(T})
: 2,.2
— 1-z)“Lk
iy+i(1-z)kry Hiz) b & - Y
-e S E(rj)E* (ri + LL%ZEL g) l
(87)
or

., [z, 1 2(1-2)
5p(0) = 2K4L J dz J gy # I dz I do
0 0 172 o

X ”d: Fn(K-l,KZ,pL) [276(w-k*V)]

X lH(Z.p,-K-,") = H*(Z,p,-;,”)lz ’ (88'3)
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e

H(Z 0 ,;,w) =

-i(1-z-02/8)Li? )

e 2k Jd?h(?)eiK'r E(F - Lilﬁiﬂg) E*(r)

(88-b)

In Appendix D we demonstrate that due to the scintillation spec-
trum's extreme insensitivity to low spatial frequency index of refrac-
tion inhomogeneities, very little error is incurred by dropping the
p dependence of the H function and extending the limits on the o
integration in Equation (88-a) to infinity to yield

] o
Sp(w) = 4n2K2L Jodz ”d; 0 (k1,6 2,0)8(w-k"V)

x [H(z,5.w) - H*(z,-cow) |2, (89-a)
where
H(Z,:,w) =
-i(1-z)L? foiE 5
g IdFN(F)e'K'r E(F-H‘%)ﬁ) E*(F) ,  (89-b)

and we have made use of the relationship between the two and three
dimensional index of refraction spectra,

00

J-mdp Fn(K],KZ,OL) = % <I>n(|<-|,|<2,0) ‘ (90)

Finally without loss of generality we can assume the wind to be
blowing in the x direction,

Vexv , (91)

so that performing the «j integration in Equation (89) yields
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P el o
Sp(w) = (41y4k2L/V) JOdZ J-de 5 (3— ,K,O)

X 'H( :K ,W) = H*(Zs‘K ,W)I L) (92)

where

o = (%K) :

and we have dropped the subscript on the remaining spatial frequency
variable of integration.

Equation (92) is the expressed objective of this chapter. The
utility of this formula lies in the fact that it expresses the temporal
scintillation spectrum for an arbitrary field and that the expression
for the source field enters the formula only in terms of the free-
space receiver plane fields. This latter fact plays an important role
in the chapters to follow.

In addition to the mathematical simplicity of Equation (92),
its various components are easily interpretable in terms of a physical ,
model of the turbulent atmosphere. The H function in particular dis- |
plays some very interesting behavior which offers insight into the i
propagation problem. Equation (92) is explored and discussed more |
fully in the rniext section. :

E. Physical Model

b

Now we wish to interpret our expression for the temporal scin- j

tillation spectrum in the context of a physical model of the atmo- |

spheric turbulence. In this model the index of refraction inhomo- 1

geneities are envisioned as a series of phase gratings [63] of |

various orientations and spatial frequencies. The components of ‘

Equation (92) will then be shown to describe the behavior of the |
fields in terms of the properties of these phase gratings.

{

|

|

!

We wish to interpret Equation (92) of the previous section:

L
Sp(w) = (41r2k2/v) Jodz I dko ("‘ 0)
x |H(z,x"',w) - H*(z,-?',w)]2 (93) i
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where

H(z,c',W) =

-i(L-2)k'2 o 5

e K Jd?N(F)e’K"r E(F - 1&:%)5:) E*(F)

P "

and we have changed the z variable of integration to the product L-z.

As preliminary background to this discussion we introduce the
concept of a phase grating as sketched in Figure 7. Illustrated in
this figure is an arbitrary wavefront impinging on a phase grating.
The phase grating is merely a diffraction grating whose transmission
function is periodic in phase rather than amplitude. To the right of
this phase grating (which can be thought of as a periodic variation
in index of refraction along a plane perpendicular to the direction
of propagation) we have depicted only the zeroth order and plus and
minus one order diffracted wavefronts. It is easily shown [64] that
the angles of the axes of the two diffracted wavefronts with respect
to the axis of the undiffracted wavefront are given by

a A (95)

where X is the wavelength of the field and % is the period of the
grating.

Now consider the situation shown in Figure 8. Here we have a
phase grating of pericd

2n/x (96)
and crientation

/|«
located in the plane z.
An axial ray striking this phase grating from the left will produce

zeroth and plqs and minus one order diffracted rays to the right
From the previous discussion the diffraction angles are seen %o be

A
4+ A=
% £

N>
E N P

LB (97)




Figure 7--First order diffraction angles of a
simple phase grating.

-(L-2)x

2 K

Figure 8--Lateral field displacements due to a
phase grating.




and in the plane z=L the displacements from the propagation axis are

+ L-z)k : (98)
But this is merely the displacement of the field in the expression
for the H function.

The foregoing argument was an heuristic derivation of the field
translations observed in the H function. In Appendix D it is shown
much more rigorously that the total diffracted field of a weak
sinusoidal phase grating is given by

1

Ey = eik(L-Z) Z ] cn En (99-a)
n=-
where
S -1n2 L-z g
£ = olBCT o E(F - pkz :) i (99-b)
o alnl )
Cn - (1 f) ’ (99-C

and ¢ is a small number proportional to the "strength" (maximum phase
change) of the phase grating. In the above equations, n represents
the diffracted order and E(r) is the incident field.

The total irradiance is given by

. R
LoifEfe= ¥ 7 coxEpe (100)
T T ans) ies) n“m “nm

and the total receiver power is

pr = I dr W(F) I

1 1
: nZ-] m§-1 CnCh J dr W(r) EqEn g (101)
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We retain only the terms in €° and ¢' (because ¢ is small) so that
Equation (101) gives

P = I dr W(r) E(F) 2
-i(L-z) .2
m : 2kz . % -ieer (=, (L-z) = .
+ c_]C0 e I dr W(r) e Elr + n ;) E*(r)

i(L-z) 2 i
K —— — i ® — - — —_—
+C*C e ° I dr W(r) P - LLEEl x) E(r)

-1°0
i(lL-z) 2 e !
K il =ire e = =y
+CoCt e 2k J dr W(r) e " E*(f - iLgll x) E(r)
-i(L-z[ KZ &
+C3C, e 2k [ dr W(F) eI E(? - Lkill-é) E*(r) .

(102)

Each of these integrals (with the exception of the first) is merely
the H function or its complex conjugate. The H function is therefore
seen to represent the interference between the zeroth order field and
the plus or minus one order field.

With the utility of the phase grating model of the turbulence
field thus demonstrated, we shall now demonstrate that the general
scintillation spectrum formula (Equation (93)) can be derived using
this model plus a few previously adopted definitions.

Essentially what we have implied in the preceding development is
that the index of refraction field can be expanded in an orthogonal
set of (moving) phase screens, the transmission functions of which
are given by exp(ie cosker). The problem however, is that the set of
cosine functions in itself is not complete [65]. Since the functions
sine plus cosine do compose a complete orthogonal set [66], we now
wish to apply the preceding technique to the situation in which the
"phase" grating transmission function is given by

exp (15 e""F) 4 (103)
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where ¢ is a small (generally complex) number. From Appendix E, the
resulting receiver plane field is seen to be

-iné(L-z)«?
] o L)
ET(Z.Z,t) o eik(L‘Z) inker

nZO C, © e
E(— % L‘l'-_"(z.)_ ;) S (104-a)
where
=1 oy (104-b)
Cy = ie(z,k,t) : (104-c)

and we have indicated explicitly the dependence of the field upon the
path variable, z, the spatial frequency, k, and the time, t. In the
strength function, ¢, the z dependence denotes the location of the
phase grating, the « dependence indicates the strength to be a function
of spatial frequency, and the time dependence reflects the fact that
thehphase grating is being blown by the wind across the propagation
path.

Following arguments and definitions employed earlier in this
section, Equations (94), (102), and (104) give for the receiver plane
power

Pr(zok,t) = Ppc = e*(z,k, t)H*(2,k ) + ie(z.x, t)H(2,k,W) "(105-a)

where
Poc = |c0|2.[ dr W(r)|E(F)|2 (105-b)

As in Section B of this chapter, we define the scintillation spectrum
as the Fourier transform of the power covariance

,(0) = J:d-r o (106)




where the power covariance is given by
L L T &
Colx) = Jodz] jodzz fdx [dx" <LPp(z1.5.8)-Ppc]
x [Pr{zp.x'st+t)-Ppcl™> . (107)

In this equation we have "summed" the power (density) of Equation
(105) over all spatial frequencies and over all phase grating
locations between zero and L.

With Equations (105) and (107) the power covariance becomes
(e) L L S
C. (1) = J dz J dz de de'
p 0 1 0 2
X [<€(Z‘| ’:. t)e*(lz .;. ’t"'T)>H(Z'| .:,W)H*(Zz g:. QW)
- <e(zy.x,t) (22.2".t+r)>H(z],E}w)H(zz.i“,w)
- <€*(Z‘| ’:’t)e*(ZZ’;' ’tﬁ)**(Z‘l ,:,W)H*(Zz ’:' ,W)

+ <e*(z],E}t)e(zz.z“.t+r)>ﬂ*(z].;}N)H(ZZ.E“,W)] - (108)

We now claim that the correlation function of the phase grating
strength is given by [67] (see Equation (58))

<e(zysk,t)e*(2p,k" s t1)> = k2 eh-':"v 8(|x-x'])
X Fn(lc] .K2,|Z]'221) N (]09)

where F_ is the two dimensional spatial spectrum of the index of
refraction field. 1In this equation the exponential phase term
reflects the frozen turbulence approximation and the statistical
orthogonality (with respect to spatial frequency) is indicated by
the delta function. This orthogonality states that, on the average,
only phase grating pairs with equal spatial frequencies and identical
orientations contribute to the fluctuations in the received power.
Finally, the square of the wavenumber, k, yields the correct units.
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We also claim that, for the term in Equation (108) in which neither
of the strength functions is conjugated, the correlation function is
given by [683
<e(27skt)e(zp k" s tr1)> = k2 1TV (e |)
X Fn(K] ,KZ,IZ]-Zzl) . (]]0)

Combining Equations (108), (109), and (110) and performing the «'
integrations yields for the power covariance

L L o
Cp(t) = k2 Iodz] Iod.zz IdK Fn(K].KZ,‘Z]-ZZH
X {ei T-K-.V [H(Z] ,:,W)H*(Zz,E,W)‘H(Z] ,:,W)H(ZZ,;,W)]

- e TV [Hn (2, Ko ¥ (25T )HE (27 H 2w 1
(1)

Assuming isotropic turbulence and making use of the change of
variable

K < -k
gives
2 - . or jreev
Cp(r) = k Iodz] IodZZ Idz Fn(K].xz,lz]-zzl)e
X [H(z] ,;,W)H*(ZZ,E,W)-H(Z] ’?sW)H(ZZ"?;W)
= H*(zq, -x,WIH* (2, -k, W) HI* (27, -k, WIH (25, -k, W) ] < F3VE}

Switching to sum and difference coordinates on the range variables
z = (z9425)/2 p = 21-2p

(which correspond respectively to the mean position and separation

of the phase grating pairs) and using the argument that the index

of refraction spectrum, F,, is very small for

kp ~ 2m
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(see the discussion in Appendix D) we obtain finally
2 L — jtkev
cp('r) = 21[k Jodz JdK e ¢n(l<-'.ic2,0)
X [H(Zox.W)-H*(z W) |2 . (113)

The scintillation spectrum is then given by

Sp(a) = (4n2K2/Y) [:dz [ o a0 (& 0

x [H(zZox" yw)-H*(z,-x" W) |2 ; (118)

where

k' = (N/VsK) s

and we have assumed the wind to be blowing in the x-direction.
Comparison of Equations (93) and (114) shows them to be identical.
It is indeed satisfying that with a few reasonable assumptions we
have duplicated the results of the much more rigorous development
of the preceding sections.

The purpose of this section has been to give a more physical
picture of the mechanisms giving rise to temporal scintillation.
Salient features of the development contained herein were the expan-
sion of the index of refraction field in a complete orthogonal set
of phase screens and the symbolic performance of the diffraction
integral to obtain the fields diffracted by the phase screens. By
using previously adopted definitions for irradiance, power, and the
temporal scintillation spectrum, and making some physically justi-
fiable assumptions, the results of the preceding sections were
duplicated. The H function in particular was seen to have an inter-
esting interpretation in the context of a phase grating model of
the atmosphere. It represents the power associated with the inter-
action between the zeroth and plus or minus one order diffracted
fields of the phase grating.

This concludes the discussion of the formula for the temporal
scintillation spectrum.
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F. Summary

In this chapter we have performed the bulk of the mathematical
development which is to be applied in subsequent chapters. The
objective was to derive a general expression for the temporal scin-
tillation spectrum of an arbitrary source field and an extended
receiver. This was accomplished in several stages. Use was made of
the Extended Huygens-Fresnel integral to derive a formula for the
spectrum in terms of the second order statistical moments of spheri-
cal waves. Expressions for these statistical moments (within the
weak turbulence regime) were derived by the method of smooth pertur-
bations and applied to this formula. Various simplifications and
manipulations finally resulted in an extremely compact yet versatile
expression which was then interpreted using a phase grating model of
the turbulent atmosphere.

Section B of this chapter was devoted to developing a general
expression for the temporal scintillation spectrum of an arbitrary
field source. An extension of the familiar Huygens-Fresnel diffrac-
tion integral was employed to express the receiver plane field of an
arbitrary source in terms of the complex phase perturbations to a
spherical wave. The power received at the detector w-" defined as the
surface integral of the irradiance (square modulus) or .ais field, and
the temporal scintillation spectrum as the Fourier transform of the
covariance of this power. The resulting formula required knowledge of
the covariance of irradiance of spherical waves. Under the assumption
that the spherical wave complex phase perturbations were normally dis-
tributed, this fourth moment of the field was expressed as a series of
second order statistical moments. One interesting aspect of the
general result of this section was that the expression for the spectrum
retained terms proportional to the cross-covariance of phase and log-
amplitude.

Expressions for the required log-amplitude covariance, phase-log-
amplitude cross-covariances, and wave structure functions were derived
in Section C via the method of smooth perturbations. These derivations
relied upon the assumption of local homogeneity of the index of
refraction statistics, and the paraxial ray approximation. Temporal
behavior of the statistical moments was deduced by making use of the
frozen turbulence hypothesis. The results, of this section showed
the desired statistical moments to be simultaneously homogeneous in
temporal separations and spatial separations within both the trans-
mitter and receiver planes. _

The results of Sections B and C were combined in Section D. By
using the weak turbulence approximation and making some simple alge-
braic manipulations, the resulting formula was expressed in terms of
a series of diffraction integrals which were performed symbolically
to yield the final expression for the spectrum. This formula for the
temporal scintillation spectrum of an arbitrary source, was in terms
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of integrations over the receiver plane fields, a single spatial fre-
quency variable, and a propagation path variable.

In Section E a model of the atmospheric turbulence was developed
in terms of weak phase gratings. Using diffraction theory and some
physically justifiable assumptions the results of the much more
rigorous development of the preceding sections were duplicated, and
the component parts of the formula for the scintillation spectrum
were given physical interpretations.

The following chapters are concerned with the application of the
results of this chapter to problems of contemporary interest.
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CHAFTER III
ANALYSIS OF A CLEAN GAUSSIAN BEAM

A. Introduction

This chapter is concerned with application of the results of
Chapter II to calculation of the temporal spectrum of a gaussian
beam with an off-axis point detector. The choice of this particular
source description is appropriate because the output of most lasers
is closely approximated by a gaussian beam. Further, the assumption
of an off-axis detector is reasonable if for instance the laser beam
is being steered by a servo system. Nominally a tracker would steer
the laser beam so that it is centered upon the detector. Since how-
ever this may not always be the case [69], the development herein
is of obvious importance.

Within this chapter an evaluation of the temporal scintillation
spectrum of a gaussian beam in the presence of weak turbulence and
with an off-axis detector is presented. Analytic expressions are
developed for the asymptotes of the spectrum with axial as well as
off-axis point detectors. The orientation of the off-axis detector
with respect to wind direction is shown to have important effects
within the low frequency portion of the spectrum. For a typical
laser beam, computer analyses of the spectrum are provided. Plots
are presented of the differential path contributions as well as the
spectra for various detector locations. Finally we discuss the ex-
tension of the theory presented herein to the treatment of finite
receiver apertures and a finite inner scale.

As a result of the analysis it is shown that for an off-axis
detector, the low-frequency behavior of the gaussian beam spectrum
departs markedly from that of plane and spherical waves. In ad-
dition, the differential path contribution for an off-axis detector
is peaked toward the transmitter (as it is for a plane wave) even
though the receiver plane is well within the far field of the laser
beam.

In section B of this chapter use is made of the general formula,
derived in Chapter II, in developing an expression for the temporal
scintillation spectrum of a gaussian beam with an arbitrarily placed
point detector.

An asymptotic evaluation of the gaussian beam scintillation
spectrum is given in section C. Analytic expressions for the
asymptotic high and low frequency behavior are provided.
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Section D contains numerically calculated spectra for several
typical beam-detector orientations. In this section we also
. present plots of the computer-calculated differential path con-
3 tributions for some typical cases.

1 Two additional topics, the effect of finite receiver apertures
and non-zero inner scales, are discussed in section E.

Section F summarizes the chapter.

B. Development of Expression for Gaussian Beam Spectrum

We now wish to apply the results of Chapter II to derive an
expression for the scintillation spectrum of a gaussian beam.

Throughout this section and the remainder of this work we
shall assume that a laser beam field is typified by a spherical
phase front and a gaussian field amplitude profile [39]

{}ij2+y2) » (xztyz)}
E(x,y,2) = E (2) e ZHER) wl(z) ),

where R(z) and w(z) are real functions describing respectively the
radius of curvature and the e-1 amplitude (or spotsize) of the beam.
To simplify notation however we will write the field in terms of a
complex radius of curvature

oy
E(x,y,2) = Ej(2) e T2

Specifically we assume that the gaussian beam field within the

receiver plane is 2
( ) -kN/2L r
o ikL(1+z /L) [in7or 1+iN(1+z_/L)
E(r) = e ¥ 15?62%+z T © o : (115a)
(0}
where the beam waist is located at z=-z, and N is a Fresnel number
defined as
N=2Ls o, (115b)
™y
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where wy is the beam waist spotsize. For this field the receiver
plane radius of curvature and beam spotsize are respectively

1482 (142,/1)
R(L) = L| = (115¢)
N (l+zo/L)
and
iz 2 2
W(L) = W, JT+N (1+zo/L) 5 (115d)
For a point detector located at ?b;
w(r) = s([r-r,|) (116)
the H function of Chapter II becomes
H(z, k' W) = (117)
5 2
-i(l-z)Le'® o o
e oK e °E(F-—Wil E')E*(F).
o k 0
Use of Equation (115a) for the receiver plame field gives
’ ~(kN/L)r2
-i ]'Z LK. 1-?' -—' _'2—_02
ol P [kN[ZL ] SN (14¢)
142 (14¢)2
2
-KkN/2L -ZLE]-Z) = =, [L 1-2] 2
ot AR K
x @ 'TINCI¥e " (118a)

where we have defined

€= zo/L. (118b)




with some straightforward algebra we see that

IH(Z’?. ’w) 5 Hk(z,-;' ,w) |2 =

2 2
-(2kN/L)r0 -N(1-2)°L/k K.Z

[kN[?L 2 T(Tee)Z 14 (14e)? (119)
14N (14¢)2

x{z cosh [Z—N%—'—Z—)—— FO-E']

14N% (14¢)2

2
1-2)L .2 [ 1#N°(1+€) (z+€) ]
-2 cos !—LK [
k 1482 (14¢)2

By employing Equation (92) of Chapter II and the double angle
formulae for the trigonometric and hyperbolic functions we then
obtain the expression for the gaussian beam scintillation spectrum

oo g g SER s s s i e e R e A R R

; -(2kN/L)r§
2 2
5 (0) = (1677K2L/V) [EHZ%L____E] TN (14e)
? 142 (14¢)
' N(1-2)2L/k 12
‘ e 12y
| i J i | den(y e,0) o1 (1) (120)
1 d |
i
i o ph R Y ._]
x<{sinh r K
; ‘]+N (1+€) o

2)(-2)L .2 14N2(1+e)(z+e)]
i K 3
+ sin 2k [1+N2k1+€)2 '}

where «'

( '(3'9’4) .
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For the special case of an on-axis point detector (F6=O), Equation f
(120) reduces to ;

Splu) = (3202K2L/v) [——55135—-6]2 I; dz Imdk¢n(%,x,d)

]+N2(1+e)2 0
~N(;—z)2 2 -
1N (1+e) sin? U_E‘Z(_lLK.z 1+N2(1+e)2(2+ﬁ A ler)
1+N“(1+¢)

Equation (121) was derived and evaluated for a variety of Fresnel
numbers and beam waist locations by Ishimaru [39]. He however
employed the technique of Tatarski [70] in obtaining this expression
for the spectrum. It is pleasing that, under certain circumstances,
these two techniques (Tatarski's and the Extended Huygen's-Fresnel)
should produce exactly the same results.

In the 1imit as N>0 (plane wave) and N>~ (spherical wave) Equation
(120) yields respectively

1 &
5, () = J dz J dee_ (%-,K,d) sinz[iléﬁlL-n'é] (122a)
0 0
and
1 o
w . 2 (]"Z L Zte |2
Sp(w) « JO dz JO dK¢n ('ﬁ ,K,O) sin [—er ]TE K ] (]ZZb)

Equations (122a) and (122b) which are expressions for the plane and
spherical wave scintillation spectra, are treated extensively by
Tatarski [36] and Clifford [35%.

Throughout the remainder of this work use will be made of the
von Karman form of the three-dimensional index of refraction spatial
spectrum [31],

21-11/6
Qn(K.'I-’KZ’K3) = .033c’21[K$+K§+K§ +(] Ez7)} (123)

whereas most previous workers [35], [39], [71] assumed the Kolmogorov
(infinite outer scale) model. In addition, Equation (120) can be

put in a form more convenient for analysis by non-dimensionalizing the
x integral through the change of variable
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K' =J7|-. 2 (124)

The temporal spectrum is then given by

2
2. 2.2 ;\8/3 -1 [ kh2L
5 () = .033c16 AL( /)73 [—5—-—7] (125a)

1+N“(1+¢)

2
1
=4mNr p

s el il 2 . i
X e]+N (]+€) J dZ J dK‘[K‘2+(L) + (].?_77)]
0 - 0 0

N(1-2) 2T B (s )]

v R
L o 2r[1#N°(14)°] cinn2[NG-2) (x %_%K.)]

1+N" (1+€} 0

+ sin? ‘%%51 P E ﬂzi;ﬂﬂjlizl {02 2 (%'j1}}'

TN (14€)"

where all of the primed variables denote those which have been
normalized to the plane wave Fresnel zone:

Ly = L//AL (125b)

k' = /Alk = 2n/(2/YAL) (125¢)

ros o T (125d)
and

v/J;i E wy i (125e)

Since the predominant diffraction pattern size at the receiver is of
dimension on the order of the Fresnel zone, JAL [62], the normalization
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frequency, wy, is seen to be the temporal frequency observed when this
scale size is blown through the beam path at velocity v.

We now write Equation (125a) in the form

2
Splw) = .033c2an2k2L (L) 8/ 3] [ﬂ%] (126a)
P 14N (14¢)

~4Nr:2

y oIV (146)% [, (0)¥S,(0)],

-

where the functions S](w) and 52(“) are given by

B e RO 2]'”/6

s](w) = 4[0 dzJ-de [fz +(wo) + (;—T::j) (126b)
: 2] 12 o
; B [ +(“’o ) ]
] o o 214N (14e)?] cinh24 N(-2) (x(.) . s K.)

1+N“(1+€) 0
ﬁ% and
; : 1176
o C ol e 1.077 ] i
So(w) 4[0 dz J_md [ +(‘*’o) +(—-L-(.)—) (126c)

2
-N(1-z)2[;'2+(36-) ]
PR
(e sinz{%& [1- %%ﬁ)é%l][(&(g;ﬁ}

The purpose of this division of the spectrum into two components is
to isolate the effects due to the detector being off-axis (given
by the function Sy(w)) from the behavior of the spectrum with the
on-axis detector }given by the function S»(w)). If the spectrum

of Equation (126) is normalized to the spherical wave log-amplitude
variance [21]

.
.

7/2 ,1/3

(127)
. 64F(4/3)(-cos%n) n

(o]

e R S Y-
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we obtain finally

-4nNr62
w S (w 2 2
_g_L')__-E =C e]+N (T+e) [S-I (w)+52(w)] (128a)

1 (O.O,L)oS

where I is the on-axis receiver plane irradiance
2

10,0,L) =[;eih/2L | , (128b)
and
C= %gﬁ /7 1(4/3)(-cos %‘12' n) = 48.527. (128¢)

This particular normalization is chosen so that the area under the
spectrum is normalized to the spherical wave log-amplitude variance;

o w.S (w)
Tim I d —3—2———2 = 4 x 2m, (129)
N'-M = I (0,0,L)os
e->0
L°+°°

where the additional factor of four arises from the difference between
the variance of irradiance and the log-amplitude variance,

o% =4 02,
X

under the weak turbulence approximation [62]. Equation (129) can be
verified by taking the indicated limits of expression (129), changing
the ', variables to polar coordinates, performing the angular in-
Eggsation, and employing integration formulae presented by Tatarski

Equation (128a) is in a form convenient for asymptotic and numer-
jcal analysis. The asymptotic evaluation for each of the two com-
ponent spectra (S7 and Sp) of this expression will be presented in
the next section.
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C. Asymptotic Evaluation

In this section we develop analytic expressions which describe
the asymptotic high and low frequency behavior of the scintillation
spectrum of a gaussian beam with an off-axis detector. These formu-
lae are derived assuming an arbitrary beam Fresnel number, N, and
an arbitrary detector location, ry. Because the spectra Sy(w) and
S2(w) exhibit diverse behaviors, they are evaluated separately.

Asymptotic Behavior of S](w)

The S1 spectrum of Equation (128a) arises simply because the de-
tector is off-axis to the gaussian beam. It is identically zero if
the detector is axially located. Typical results presented later in
this section will show that S1 makes a significant contribution to the
total spectrum only within the low frequency range, i.e., for fre-
quencies such that

L < on. (130)

<
v

3

0

We now wish to make two approximations which will greatly simplify
the evaluation of the spectrum Sy. First we approximate the exponential
function and then the hyperbolic sine function in Equation (126b). The
argument of the exponential function is bounded in its z and N variables
in the following manner:

N(]-Z)z K"2 wlos 2 P L K'2 i 2 =
2"[1+N2(]+g)2][ Hlolug )" £ g D'+ (w/uy)"] (131)

At the point
= =J(m/w0)2 + (1.077/L(‘))2, iy

beyond which the function
[ 24 (w/u ) 2+(1.077/1,)21-11/6 (132)
decreases rapidly, we have

' 2
Z—WEK'ZW/%)ZJ=l—;[2(w/wo)2+(’—ig°—71)] : (134)
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If we restrict our attention to temporal frequencies such that

] .077)
]
LO

or
201 (1.077)_
© O B

or

[201 i
L, > 1.077 (£ [l ~ afaL

we can use the approximation

-NO-2) [k P 0/u )]
271 (14e)%]

(138)

We now must approximate the hyperbolic sine function in Equation
(126b). Its argument is bounded as follows:

(139)

At the point
.’ =,/(w/wo)2 + (1.077/1)°




1

AR

(x

For temporal frequencies such that

<10 (1.077

")

L

W L

0

the argument of the sinh function is

S

oy

0

» 7 ¥
= yoJﬁ(w/wo) +(1.077/L3)°).
(140)

N‘]'Z! '
1+N°(14¢) (g

. 5(1.077)

L

+ y'k') <
wo yOK ) v

AL

ro.

By requiring
5(1.077)rb

L

<<
o 1

or
L

0
Yo <5(T.077)°

we can employ the approximation
sinh® X 3 X2 .

With the foregoing approximatio
Equation (126b) becomes
. »
} J dK'[K

¥

Syla) = %[““Tfl“'if
T+#N“(1+¢)

IL,’.
X (xo =

o
Yo ¥
0

(1.877)[KE (xg#¥,)

(141)

(142)

(143)

ns the expression for Sy in

) (e

(144)
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By expanding the quadratic term in the integrand of Equation (144) it
is seen that the cross term is an odd function of «' and the integral

goes to zero. Therefore Equation (144) is

2
Sw) = ’}H""‘Z]
1+N°(1+¢)
o ¥ o 21-11/6
X {(x") .“T;) J.“dx' [n'z + (w/wo)z "(J‘['EJJ') ] (145)

-11/6
s 2| ae K-Z-[K-A(m/mo)z ‘("'[_‘!""1'077)2] o
(]

=0

The change of variable

A K'i/K'ﬁ‘o')z (lr%af] (146)

allows the expression of these integrals in terms of Beta functions [731;

2
S(w)=-4-[ N /1:]:'43
L 3| 12 (14¢)2 r

" {(xaz &) [(—;)2 " (L.L%L)a] s

+§ (y;)z[(%;)Z + (‘_-Lgll)z]'”'" ; (147)

where we have used the well known identity relating the gamma (r) and
beta functions [73].
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For the detector and beam axis along a line collinear with the
wind, ry = (xg9,0), (recall that we assumed the wind to be blowing in
the x direction) then Equation (147) predicts

ST - 3
(w/wo) A w/wo ].077/Lo

S, a (]483)
L (w/wo)'2/3; wluy > 1.077/L}

However for the detector and beam axis along a line orthogonal to the
wind direction, v, = (0,y;),

constant s m/mo < 1.077/L6

(148b)
(m/mo)-2/3 s wluy > 1.077/L)

S] a
These asymptotic results are summarized in Figure 9a in which we have

defined @, as

N (149a)

a == —_—
1 1+N2(1+e)2
and the constant C] as

1 r(11/6).

Figure 9b shows the resulting numerical values of the asymptotes when

N=2x10°

e=0 (150)

L0 = 10 meters

L = 2.516x1072 meters

and the detector is located at

Fb = (.63,0) (151a)
and

Fa = (0,.63). (151b)
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We can normalize the off-axis distance, rg, to the receiver plane i
beam spotsize (Equation (115d)) to obtain for Equations (151) :
;6
) (1.00,0) (152a)
and
Fﬁ
w(l) = (0,1.00). (152b)
Note that for the case
Ty = (x4:0), 3
the peak of the curve occﬁrs at 3
W  _ 1.077
g e

even though the +2 and -2/3 asymptotes intercept at

_1.077
o
0

°E|E

This can be verified by differentiating Equation (147) with respect
to w/w_.
(s

We now return to our phase grating model of the atmospheric
turbulence and sketch, as in Figure 10a, the receiver plane positions
of the zeroth and plus and minus one order diffracted beams as
functions of the spatial frequencies w/v and x. (Recall that the
spatial frequency w/v is associated with the wind direction.) This
figure merely illustrates the fact that, for a finite beam, the
detector position with respect to the wind direction and the zeroth
order beam axis will have an effect upon the scintillation spectrum.
Of course for fields of infinite extent, e.g., plane and spherical
waves, the detector "position" loses distinction. Indeed, it can
easily be seen that the Sy(w) spectrum goes to zero as the beam
Fresnel number approaches zero or infinity. These limits correspond
respectively to plane and spherical waves.

69




o e M NN S i b P

Ay

1} LOCUS OF *I ORDER
OIFFRACTED BEAM
CENTER AS x—=+>®

i *I ORDER
A BEAM |
‘ \ —w/ly (Li)/k j
Es. 1N 3o - x ’i

Yy Lort

o orDER 1
BEAM
K -0

| ORDER 3
BEAM

Y
LOCUS OF ~| ORDER
DIFFRACTED BEAM
CENTER AS x—>®

Figure 10a--Diffracted orders of a finite beam.
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For the detector off-axis to the zeroth order beam the 0-"1
beam interaction and the 1-0 beam interaction contribute un-
equall{ to the scintillation spectrum. When the detector is in
the 1St or 4th quadrants the contribution to the spectrum is
weighted toward the 0-*1 beam interaction. Likewise, when the
detector is in the 2nd or 3rd quadrants the ~1-0 beam inter-
action predominates.

In Figure 10b we have illustrated the zeroth and *1 order beams
for a phase screen located at z=0. Also shown in this figure is the
beam deflection region for which the index of refraction spectrum,
¢p, is constant

2

2 + (u/v) 1.077

Lo

2

=|r—
=~

<

With this figure we wish to illustrate the behavior of the spectrum
for the case in which the detector is at either zero or 90 degrees
with respect to the x-axis.

For the zero degree case (rg=(xg,0)) the magnitude of the product
of the zeroth and *1 order beams (in the expression for the H function)
increases as w/v increases simply because the deflected beam's axis
moves closer to the detector. In fact, the product is maximum when
the deflection is such that

L
k

<|e

|
0o

However, once the *1 order beam is deflected out of the region for
which the index of refraction spectrum is constant, the scintillation
spectrum will decrease (since ¢, decreases beyond this point). There-
fgre the scintillation spectrum will increase up to the point at
which

Lw,L1.077

kv k Lo
or

w_ _1.077

Yo Lo

and will decrease beyond this point.
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For the detector off-axis to the zeroth order beam the 0-"1
beam interaction and the 1-0 beam interaction contribute un-
equa11¥ to the scintillation spectrum. When the detector is in
the 1St or 4th quadrants the contribution to the spectrum is
weighted toward the 0-*1 beam interaction. Likewise, when the
detector is in the 2nd or 3rd quadrants the ~1-0 beam inter-

action predominates.

In Figure 10b we have illustrated the zeroth and *1 order beams
for a phase screen located at z=0. Also shown in this figure is the
beam deflection region for which the index of refraction spectrum,
¢p, is constant

J K2 + (uu/V)2

With this figure we wish to illustrate the behavior of the spectrum
for the case in which the detector is at either zero or 90 degrees
with respect to the x-axis.

L 1.077
N
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0

For the zero degree case (rg=(xg,0)) the magnitude of the product
of the zeroth and *1 order beams (in the expression for the H function)
increases as w/v increases simply because the deflected beam's axis
moves closer to the detector. In fact, the product is maximum when
the deflection is such that

Bty
kv o

However, once the +1 order beam is deflected out of the region for
which the index of refraction spectrum is constant, the scintillation
spectrum will decrease (since ¢, decreases beyond this point). There-
fore the scintillation spectrum will increase up to the point at
which

Lu, k1.617
kv kK
0
or
PR
Yo Lo

and will decrease beyond this point.
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Figure 10b--Zeroth and plus one order diffracted beams. ;
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When the detector is at the 90 degree location (rqy = (O,yg))

the « variable of integration sweeps the deflected beam through all
possible orientations with respect to the detector. Hence the

scintillation spectrum will remain constant up to the frequency

_1.077
LO

ElE

0
and decrease thereafter.

The purpose of the preceding discussion was to provide a physical
interpretation of the effects observed when the detector is off-axis
to the beam. Of course if the detector is axially located we should
expect to see none of the behavior which has just been described.
Qualitatively, the results of this discussion and of the earlier
analytic evaluation are identical, thus lending credence to those
results.

Asymptotic Behavior of S, ()

The Sp spectrum of Equation (126c) is simply the spectrum of a
gaussian beam with an axially located detector. As such, it de-
termines the behavior of the spectrum of Equation (126a) for an axial
detector as well as for the limiting plane and spherical wave cases.

We ;hall be concerned with two basic frequency ranges; high frequencies,
such that

w
——C 2"’

Yo
and Tow frequencies, such that

L. << 27.

®o

In addition, within the high frequency region, we are interested in
two sub-regions:

N(w/mo)2 ;
5 > 1 (sub-region A)
2n[1+N"(1+€)“]
and
2
N(w/wy)
5 5 <1 (sub-region B).
2n[1+N°(1+€)“]
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Within the high frequency region, i.e. frequencies such that

.52 153
- m (153)

the sin? function is oscillating so rapidly with respect to the other
terms in the integrand of Eq. (122c) that we may set

sin2(---) %‘7 . (154)

The S, spectrum is then given by

Sz(m) =4 J; d [an + (w/wo)z:l"]]/s

N[k'2+(0/ug)?]
b T anea+e)d

X J du e (155)
0

where we have made use of the change of variable u=1-z. For very
high frequencies (high frequency sub-region A) the u integrand is
small long before the upper limit of u=1 is approached. Therefore

the upper 1imit may be extended to infinity and the u integration
performed in closed form to yield

0

Nan V2 e -7/3 |
Splu) = 2/« [——_—‘_—"_7%] [ aene s (/) . (156)

142 (14e)
The change of variable
X = K'2/(w/w°)2

puts Eq. (156) in terms of a Beta function [73] integral which gives
for the S, spectrum




e V2, A3
[iiﬁifﬁiZiﬁ] (——) : (157)

Yo

For the case in which the upper 1imit on the path integration
cannot be extended (high frequency sub-region B)

-8/3 2 (» 3 ; Sl
Splw) = 2 (EL) ; I du & J ot P, fany ~FHE B

e 8 g (158)
where
_(v2m) (/)
1+ N2(1+6)2

and we have used the change of variable

K = K'z/(m/wo)zl

The « integration is of the form [74]

J dt t2v-1 (t+1)2u-1 Pt
0

= rf2v) TV AL (P) (160)

where W is Whittaker's function [75],[76] which can in turn be expressed
as

r(1-2u-2 utv  -p/2
Wiey u-viglP) = _% T-2u e ke ; 1F1(2v;2ut2v;p)

P‘2%+2v-1! l1-y-v _-p/2 RS DT S
+ T P e .'F.l(] 21192_21-1 2\”p)o




where ]F] is Kummer's confluent hypergeometric function [76] defined
as

St LR e 2"
Fplxswsz) = HZO‘I("TUlﬂS%)TT B s Do

With these formulae Eq. (158) is

-8/3 (1
Sp(u) = 2 TEI(4/3) (g;) ‘ fodu e k4 s Libud)

-8/3 .1 2
+2 r(—4/3)<-_) Jodu e~bu (bu2)4/3 ]F](%l;%;buz). (163)

w
Yo

Employing Eq. (162) and integrating term by term yields finally [771[78]

apr/y B
)‘8/3 %i/; r(4/3) (1/2)q [EECE;)]

Sp(w) = (gg- F7ey L T-173), ni{n+172)
n=

2
1.3 Apfw
X 1F1(?+Z;"+‘; T 6‘) )

0
= (11/6), [%(z—o_)z]

n+d/3 2
1. 17.%f0_
+ r(-4/3) nZO 773),, nT(n+1176) 1f ("T’"FS’ Z_W(m )) ’

where (a), is Pochhammer's symbol defined as

(a), = 51%%%} : (165)

and . is defined as

N

£ (166)
P 1aNe(14e)?

o

76




By integrating the hypergeometric functions in Equation (163) term by
term we have made the tacit assumption that these series are uni-
formly convergent [79]. That this is so may be shown by calculating
the radius of convergence [80] of

(Fylasbsz) = [ c2", (167a)
n=0
where
_Tr(a+n)r(b) 1
Ch = Tlbn)T(a) nT . (167b)

(168)

For the confluent hypergeometric function

) BT atn %
kol ety o S

i.e.,

R~>w . (170)

Therefore the (confluent) hypergeometric series is uniformly con-
vergent [81] for all values of the argument z (which is in general,
complex), and we are justified in integrating the series term by
term.

If we retain only the first few terms of the series in Equation
v (164) the behavior of S, within the high frequency region may be more
q closely examined;

-8/3
24 (4/3 .
Sp(0) = =176 (%‘) {

0

—

:’\_;2

m\w 11

K
2 ()

0 )2+ 3_r(-4/3)r(11/6)

J7r(4/3)

214/3
ey .
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The dominant behavior in this frequency range is seen to be the -8/3
power of frequency.

The low frequency behavior of Sp is now calculated by retract-
ing the approximation of Equation (154), letting

sinzx = %-- %-Re{eizx} s (172)

and employing techniques and formulae similar to the preceding [74,82,
83]. This approach results in the formula

2 n
-8 1_;54[3) = o (12, [0 A%/2x)
G - F(11/6 nZQ (-1/3), nl

‘IF] (n+ 2,""‘2" (1 B /211’) -I 4( 4/3) © (]]/s)n (arAz/ZTT)n+4/3
n+]/2 2 /TT =0 m3)n n!

(n+ WinedZ._ 2/20) - (1/2) . 2\n
1 1 6 6 r it r(4/3) nol =ik
2 1176 8 F{TT767 L T3, (Zv )

® (iBzyn 2F](-(m+n),m+n+l;m+n+2;-ia)
0

g mZ 2m m! (m+n+T)

r(-473) = (1/6)y ¢ /. 4a2\n*4/3 = o2\m
o ot ol ! (5;-)

x

5 (173a)

F](-(m+n+ %),m+n+ %;m+n+ %g;.-ia)
m! (m+n+7/3)
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where

N

= Re{a} = —5—5 (173c)

- 142 (1+e)2
2 211/2
A= [(w_) + (_,__‘£°77) ] (1734)
Yo 0
B = w/ug s (173e)
and 2F] is Gauss' hypergeometric function [84] defined as
= (w) (x) N

oF1(w,x3y52) = nzo o), nl (174)

While we have made no approximations in deriving Eq. (173a), its
usefulness is Timited to Tow frequencies because the series do not con-
verge uniformly for N on the order of unity or for high frequencies.

If only the first few terms of the equation are retained, we obtain

4/3 F (N))
_ 2/ T*4é32 27 (1] Fi]](ﬁ) 1P
Sz(w) - EPEELE [Z (I"T) r(7/6 (F]s(N)
+ Fpy(N)(A8/3 8% + 3a2/3 g2 L 2L A4/3)] ; (175a)
where the function

r

=1

FipN) = af/3 + 111 -k (ai 4 V3 o))

g2
+ 18 (ol . o528 arui)] (175b)

gives the correct plane wave D.C. level as N»0, and the function
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Fis(N) = W43 +J1?_F$:4/_31_§/3 (175¢)
i 3r(11/b)2

goes to the spherical wave D.C. level as N»=. Also in Equations (175)
we have defined

2
A Y iz o1 L
Falu) » i(zn) oy (3 T4ty ) VHESRL

and

a; = Im{a} : (175e)

To within a multiplicative constant (due to the normalization used
herein) Equation (175a) can be shown:to yield the 1imiting plane and
Ephirical wave (N>0,N><) behavior as quoted by Reinhardt and Collins

3r].

As an indication of its plane and spherical wave limits we have
displayed in Figure 11 the D.C. level of S2 normalized to the spherical
wave D.C. level, as a function of the Fresnel number N. Although
Figure 11 indicates a lack of agreement between expressions (175b) and
(175¢) within the region Nv1, the figure is indicative of the con-
ditions under which the gaussian beam may (for the purposes of ob-
serving scintillation spectra) be considered to be in the near or far
fields.

Final results of the asymptotic evaluation of the spectrum S2 are
presented in Figure 12a. The breakpoint between the zero slope D.C.
level and the -8/3 slope, which is commonly referred to as the Fresnel
breakpoint, will move slightly as the Fresnel number N of the gaussian
beam varies between zero and infinity. However, owing to the steepness
of the cutoff (-8/3), the Fresnel breakpoint will always (for weak tur-
bulence) be on the order of 2n. The Fresnel breakpoint can be inter-
preted as denoting the temporal coherence length (in the presence of
the turbulence) for the source employed. At this breakpoint (at least
for plane and spherical waves)

:—'\-’2‘"
0

or

f n

£, 4
JaL
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The temporal coherence length is then simply

=1/ = [AL/v.

An expression for the breakpoint between the -8/3 and -11/3

asymptotes is obtained by setting
r(4/3; / a. | w,
and solving for w/wos

2

2 2 2

w _3[rQ1/6 {2_31‘116 2n[ 14N (1+e)“]
G"'E[‘l("ﬂ%;‘] a_--S_[—(TI;T;-]j I:+NJ+)
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This breakpoint frequency is minimum for the collimated laser beam
Nv1, and goes to infinity in both 1imits as N0 and M. From Equa-
tions (115d) and (149a) this point is seen to be at

g 31r(11/6

2
__2,,_[ ] W)
or at

on L 2W(L)
e

where W(L) is the receiver plane beam spotsize. The frequency of the
break point is increased (decreased) as the number of Fresnel zone
size patterns contained within an area the size of the receiver plane
beam spotsize increases (decreases). Thus the term

20(L)AAL

constitutes a beam size factor.

Figure 12b presents numerical values for the asymptotes when

3

=
[}

=2x10

m
"
o

(177)

-
n

10 meters

and

2

JAL = 2.516x107“ meters,

plotted from Equations (157), (171), and (175).
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As a final result of the preceding asymptotic evaluation we
present in Figure 13 a composite of the S} and S2 spectra. The
slopes and breakpoints have been given earlier. In Figure 13 the
, departure from a flat spectrum for frequencies below the Fresnel
\ breakpoint is a result of the detector being off-axis. Previous
{ authors [37],[39] who always assumed an axially located detector pre-
: dicted no such behavior. Other authors [85],[86] assumed that low
; spatial frequency turbulence or system noise (for the case in
which the beam is being pointed by a servo-system) gives rise to beam
wander, which is equivalent to saying that ry is a random variable.

4 However these workers were not concerned with the resulting effect
- upon the temporal scintillation spectra.

S
F

This concludes the discussion of the asymptotic evaluation of
the gaussian beam scintillation spectrum.

‘BEAM AXIS AND
DETECTOR ORTHOGONAL
TO WIND OIRECTION

BEAM AXIS AND
DETECTOR COLLINEAR
WITH WIND DIRECTION
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Figure 13--Asymptotes of gaussian beam spectrum.

D. Numerical Evaluation

This section is concerned with a numerical evaluation of Equation
(126) for the temporal scintillation spectrum. The computer programs
were written in Fortran IV and employed Gaussian quadrature inte-
gration techniques. Listings of these programs plus brief descrip-
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tions are contained in Appendix G. In addition to the numerically
calculated spectra, we also present computer generated plots of the
normalized differential path contribution to the spectra, defined
as

5
w w w.S (w
it o fie = (176

1°(0,0,L )0 17(0,0,L)0,

Presented in Figure 14 are the computer calculated spectra of a
clean gaussian beam for various cases. Note the similarity between
these curves and the curves in Figures 12a and 13. The decrease in
the magnitude of the spectra for the off-axis cases is due simply-
to the decreased intensity of the beam at these points. This figure
shows the spectrum resulting from a laser beam with Fresnel number
N~ 2 x 103. Curves resulting from axial as well as off-axis point
detectors are included. Note that for rg = (xo,O) the low frequency
peak is at

w/wy =/3 (1.077/L6) ‘

Now consider the differential path contribution to the spectrum.
To put things in perspective, Figure 15 shows the computer generated
differential path contributions for plane and spherical waves for
w/wg < 2. For the plane wave, the differential path contribution is
peaged at the transmittar. In contrast, the spherical wave dif-
ferential path contribution is peaked at mid-path. Figure 16 is the
same except for w/wg > 2r. In this frequency range, both the plane
and spherical wave differential path contributions are oscillatory.
These figures are to be compared with Figure 17 which shows the
gaussian beam differential path contributions for w/wg < 27 and
w/wo > 2m. For this case the Fresnel number was on the order of 2 x
103. From the results of the analysis within this chapter it is seen
that the gaussian beam should behave as a spherical wave, yet when the
detector is off axis, the low frequency differential path contribution
appears to be that of a plane wave. That is the path contribution is
more heavily weighted towards the transmitter. This phenomenon has
important implications in situations where laser beams are propagated
between aircraft. For an off-axis detector the scintillation spectrum
will become sensitive to the outer scale of any turbulence localized
in the vicinity of the transmitting aircraft's fuselage. For suffi-
ciently short outer scales (typically £ 1 meter) [87] the Fresnel break-
point at w/w° ~ 27 may easily be obscured.
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This concludes the analysis for a clean gaussian beam with a
point receiver. In the next section we will extend the results of
this and the previous section to include the effects of finite de-
tector apertures and a finite inner scale.

E. Additional Topics

We now wish to extend the results of Section C to account for
two phenomena not previously mentioned, namely the effects upon the
scintillation spectrum of finite detector apertures and a finite
inner scale. The former effect is of interest because all physically
realizable detectors have a finite aperture. The assumption in
Section D of a point detector was merely a device used to simplify
the mathematics. However, we will demonstrate that, under certain
conditions, this is a reasonable approximation to reality. Inclusion
of a finite inner scale in the model of the index field reflects the
fact that the kinetic energy of very small scale index inhomogeneities
is dissipated in the form of heat rather than being passed on to
ever-decreasing scale sizes. From the discussion of phase gratings
in Chapter II, it is seen that the existence of a finite inner scale
requires that (for weak turbulence) the angle of the bending ex-
perienced by light rays passing through the turbulent atmosphere be
bounded by

%pax = Moo

where ) is the wavelength and 245 is the inner scale of turbulence.

In Eq. (123) of Section C we could have easily included an inner
scale cut-off in the expression for the power spectrum of the index
fluctuations [71];

2 -11/6 ‘('(/Km)z
on(xqskp5k3) = 0.033 C5[k2 + (1.077/L4)?] e » (179)
where
K2 = K% + Kg + Kg s
kot = [0.033n7(5/3)173/4 = 5.92 ;

and %o is the inner scale of turbulence.




Inclusion of this inner scale dependence results in an additional
term in the integrand of Eq. (125) of the form

-[k* 24 (w/wg)?]
(v"xrkm)2

exp

Inspection of this term shows that the inner scale will produce a
gaussian roll-off of the scintillation spectrum in the vicinity of

/AL
‘:—)—;%5’92—% . (181)

For a Fresnel length on the order of the inner scale (& ~10'2-10'3m)
this effect could easily dominate the high frequency begavior of the
scintillation spectrum. If for example the range, L, is one kilo-
meter, the source is a helium-neon laser (A=.6328x10-6m) and the
inner scale, %9, is one millimeter then the scintillation spectrum
will exhibit an inner scale effect for

Or for a velocity, v, of 150 meters/sec., inner scale effects would
begin at

f~ v/!L.0 = 150 KHz.

Finite aperture effects are determined by defining the receiver
aperture as

S T 3 |r] 20f2
W(r) = A (182)
o ; |r] >Ds2

where D is the diameter of the photosensitive area of the detector.
For a spherical wave (chosen because the integrations are easily
?erfgrmed in closed form) the H function is given by (see Equation
89b




_.iz ]‘Z LK'Z , = =
H(Z,x" W) = |Eo|2 e 2k IdF'N(F) e
- izgl-zzLx'z
2 2k b/2 2m izx'ocos(¢-6)
= |E°| e j do o I d¢ e (183)

or finally

23, (2 %K') - i z2(1-2)Le'2
D
2

H(z,x' M) = n(%)2|50|2 ““m e = . (188)

The scintillation spectrum, from Eq. (92), is then 1

1 o
Splu) @ Jodz Iodn D24 (u/ug)24(1.077/13)21 /8

D" 2 )
x sin’ {;(%__z_)_ [+ )21] 201(2 2 Jer(orug)?) . (185) i
m 0 I 4 g—|JKz+(w/wo')§_ }

Within the high frequency region we can approximate the sin? function
by 1/2, extend the z integration to infinity[88], and perform the «
integration to obtain

Sp(w) 5 (:”—)-”/3 : (186)

0

Similar results are to be expected for plane or gaussian beam waves.
The onset of this so called aperture averaging phenomenon may be de-
termined by equating the formulae for the -8/3 asymptote (derived
under the assumption of a point detector) and the -11/3 asymptote
for a finite aperture. :
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This aperture averaging region can also be discerned by physical
arguments. At the receiver we observe a series of diffraction pat-
terns of various sizes, &, flowing in the direction of the wind at
velocity v. The associated temporal frequency at the output of the
detector will therefore be

f =v/2

or

n (187)

“o g s il

However for an aperture, D, larger than the dimension 2, the detector
wil?! integrate over these diffraction patterns [62] thus attenuating

the effects of this scale size. Aperture averaging would then occur

for frequencies such that

S (188)
“o ™ p/fAL

Therefore aperture averaging should be of Tittle concern if we require
that the aperture diameter be much smaller than the Fresnel zone;

D <<J-I 3

As an example, for a one kilometer range, a HeNe source, and a one
centimeter receiver aperture, one would expect to observe aperture
averaging for

16 .

w_
“o

-
n
Alternatively, for a velocity of 150 meters/sec., aperture averaging

would occur for frequencies

f > v/D = 15 KHz.

On the basis of arguments presented in this section it is seen
that if we require

QO,D << ,/—)\_L P (]89)
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then the inner scale effects and aperture averaging effects should be
of Tittle concern in the determination of the scintillation spectrum.
This concludes the analysis of the temporal scintillation spectrum
of a clean gaussian beam.

jﬁ F. Summary and Conclusions

Within this chapter we have presented an evaluation of the
temporal scintillation spectrum of a clean gaussian beam fur the
case in which the detector is off-axis to the beam. The off-axis
detector problem has not been previously treated in the literature.
The general formula for the spectrum derived in Chapter II, was
employed in conjunction with a particular model of the index of
refraction spatial spectrum, plus the assumption of an off-axis
point detector, in deriving an expression which was then evaluated
asymptotically and numerically. As a result of the analysis it was
shown that the fact that the detector was off axis produces some in-
teresting outer scale-dependent behavior for frequencies below the
Fresnel breakpoint. In addition, this low frequency behavior was
shown to be dependent upon the location of the detector with respect

F to the beam axis and wind direction.

. _Section B was concerned with setting-up the problem. The von-
1 Karman model of the index spectrum together with a gaussian beam Source
E field were used in the expression for the spectrum derived in Chapter

II. The assumption of a point detector enabled performance of the
integration for the H function of Chapter II. The final expression
for the scintillation spectrum was demonstrated to reduce to that
which was derived by other authors when the detector was axially
located, as well as to the expressions for the plane and spherical
wave scintillation spectra when the beam Fresnel number was allowed
: to go to zero and infinity respectively.

3 In Section C the expression for the spectrum was evaluated. The
first portion of the section was devoted to developing analytic ex-

: pressions for the spectrum of a gaussian beam with arbitrary Fresnel

' number. Expressions for the spectrum in terms of hypergeometric

§ functions were developed and asymptotic behavior (for high and low
: frequencies) was determined by retaining only the first few terms
E of the series expressions for these functions. Under certain con-
; ditions it was found possible to determine closed form expressions
1 for the spectrum asymptotes.

Section D was devoted to a computer evaluation of the spectrum
for a particular beam Fresnel number, and a variety of detector
locations. In addition, differential path contribution plots were
presented for plane and spherical waves, and for gaussian beams
with off-axis point detectors.
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As a result of this section it was shown that for the detector
and beam axis along a line collinear with the wind direction, the
scintillation spectrum displayed a peak at w/wg = J3(1.077/Lgy) with
a +2 power law for frequencies below and a -2/3 power law for fre-
quencies above this point. For the detector and beam axis along a
line perpendicular to the wind direction the spectrum showed a break-
point at m/wo=].077/L6 with a ~2/3 power law for frequencies above
this point.

The differential path contribution plots showed that despite
the fact that a gaussian beam may be well within the Fraunhofer zone
(N >1), the off-axis detector causes the path contribution to be
peaked at the transmitter (as it is for a plane wave) rather than
at midpath (as it is for a spherical wave). This effect has important
implications (as will be demonstrated in the next chapter) for cases
in which the turbulence strength is non-uniform along the propagation
path.

In Section E the analysis was extended to describe finite inner
scale and finite aperture effects. Through mathematical and physical
arguments it was demonstrated that if the inner scale and the aperture
diameter are much smaller than the plane wave Fresnel zone (yAL) then
their effects can be ignored.

Throughout this chapter the off-axis distance and orientation of
the detector have been assumed to be deterministic. For the case in
which the laser beam is being steered by a servo system however, these
variables could easily be considered random. By assuming appropriate
statistical distributions for these variables it would then be possible
to determine the effects upon the scintillation spectrum of servo
tracking error or noise.




CHAPTER IV
THE DIRTY GAUSSIAN BEAM

A. Introduction

The purpose of this chapter is to develop a model of a dirty,
i.e., spatially corrupted laser beam, and to determine the effect
upon its scintillation spectrum of the laser beam being dirty. This
objective is pertinent because laser beams sometimes do not have the
perfect spatial properties which most analytical studies presume.
Even if the beam does have good spatial quality, many situations
require it to be passed through a window, for example on an aircraft.
This unavoidably introduces a certain amount of deterministic spatial
noise into the phase and/or amplitude of the beam.

The configuration chosen for analysis within this chapter is that
of a clean gaussian beam shining through a window whose transmission
function is assumed to be unity except within a small axially located
spot where the phase of the incident beam is shifted slightly. This
model is appropriate for the situation in which the laser beam is
transmitted through a window on which there is an oil spot or an
imperfection.

Instead of calculating the actual receiver plane fields due to
such a configuration, (as required by the general formula for the
scintillation spectrum which was derived in Chapter II) the field
immediately past the window is expanded in a two dimensional series of
functions involving Gauss-Hermite polynomials. The particular formula-
tion used enables the receiver plane fields to be written down immedi-
ately without having to resort to performing the diffraction integrals.
Since the size and phase of the spot are chosen a priori, and we wish
to use as few terms of the polynomial expansion as possible, an optimi-
zation procedure for approximating the fields behind the window is
presented.

The integral expression for the scintillation spectrum resulting
from our formulation of the dirty beam problem is evaluated numerically
and the results presented as a series of plots. As a result of the
analysis the dirty beam's scintillation spectrum is shown to be
sensitive to turbulence localized in the vicinity of the transmitter.
This sensitivity gives rise to low frequency behavior similar to that
demonstrated in Chapter III.

In Section B the dirty beam representation is formulated. The
dirty beam is modeled as a clean gaussian beam which has been trans-
mitted through a window having a unity transmission function except




for a small axially located spot where the transmission function is
complex. The fields to the immediate right of the window are expanded
in a complete orthonormal free-space eigenmode set [90,91]. These
functions which closely describe the modes of an optical resonator
(i.e., a spherical mirror laser) are exact eigenfunctions (within the
paraxial approximation) of the free-space wave operator. Therefore an
arbitrary field may be expanded in some plane in terms of these func-
tions. The functions then can propagate independently to any other
plane and be reassembled with the known weights to determine the
actual field. This property of the Gauss-Hermite polynomial expansion
is employed in the evaluation of the general expression developed in
Chapter II.

By use of Babinet's principle [92] the dirty spot is essentially
expanded in terms of a truncated series of laser modes. Since this
series is truncated, we present a procedure for optimizing the approxi-
mation.

A particular case of the dirty beam problem is treated in Section C.

The required integrations are carried out numerically for a variety of
detector locations and turbulence strength distributions and the
results presented in the form of several plots of spectra.

Section D contains a summary and conclusions.

B. Development of Model

This section is concerned with the formulation of a model of the
dirty beam and an optimization procedure for approximating it in terms
of eigenmodes of the free space wave operator.

We shall first demonstrate the use of this particular eigenmode
expansion as a means of expressing an arbitrary field. The specifi-

cation of a general field in terms of the Gaussian-Hermite polynomial
functions is written as [91]

E(X:.Ysz) = Z 2 amn fm(x’2+zo) fn(.Y)Z+Zo) (]90"3)
m=0 n=0

where the f functions are defined as

% s
fm(x:2420) = (g_;%) (E%;T) [1-iN(z+2,)/L1"/2

™

-a(z+zo)x2

x [1+iN(z+2,) /L] (M1)/2 W (V2a(292,) x) e . (190-b)
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. kN/2L
al14g) = TNtz

ap(z+zg) = Re{a(ztzy)} {190-c)

is the @th order Hermite polynomial [93], N is the beam Fresnel
number defined in Equation (115b), and the beam waist is located at
2=-z,. Making use of the orthonormality [94] of the mode functions

Jm dx fy(x,z+zy) ff(x,z+zo) = Sk (191)

gives the expansion coefficients

©

amn = JI dxdy E(x,y,z) fx(x,z+zy) ffi(y.z+zy) . (192)

~-00

The field of a spherical mirror laser operating in the lowest order
transverse spatial mode nominally consists of only the zero-zero
eigenmode. If we arbitrarily assume

1; ’=0
- J;-_ i (193)

then the field is simply

kN/2L 2.9
KN/2L - TRz O
Y = e "
E(x,y,2) = 13 TRV (194)
With the exception of the trivial phase factor exp[ik(z+z,)],
Equation (194) is recognized as the expression for the field used in
Chapter III (Equation %115a)). Throughout the remainder of this chapter
Ye agsume that the unperturbed laser beam is described by Equation
194).

We now proceed in the development of a particular model for the
dirty laser beam.
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With reference to Figure 18, we define a circular region at the
z=0 plane (the plane of the dirty window) within which the field of
Equation (194) is corrupted.

Figure 18--IT1lustration of phase obstacle.

To the immediate right of the z=0 plane the field is
E(x,y;0+)D6(x"x5’Y'ys) (]95-8)

where the window transmission function, Dy, is given by

Ael 5[ (xx)2+(y-ys)? < 872 (195-b)
Ds(x'xs’.V‘.ys) =
1 ; elsewhere .

§ is the diameter of the circular region and the field is given by
Equation (194). Equivalently by use of Babinet's principle we may
express the field within this plane as

E(x,y,0%) = [1-D,(x-xg:¥-Y¢) JE(x,y,0") (196)




or by defining a new variable, Dy,
E(x,y,0%) - Dé(x-xs.y-ys)E(x.y,o*) . (197)

In the material to follow, we shall define the complementary field as
EC(x,y,0%) = Dj(x-xg.y-¥¢)E(x,y,0") (198-a)

where

1-A el ;1 (x-xg)2+(y-y5)? < 8/2
D = . (198-b)
s
0 ; elsewhere

As an example consider the case in which A=0. Then the comple-
mentary field is

E(x,y20") 3 (xox )2+(y-y5)?

0 ; elsewhere

< 8/2

E¢(x,y,0%) = (199)

Within the region to the immediate right of the disc, the complementary
field exactly cancels the incident field.

The eigenmode expansion will now be applied to the complementary
field:

EC(x,y,2) = z Yon In(Xs2+27)g, (ys2+2¢) (200-a)

where the mode functions are given by

% %

-B(Z+Z1)X2

X [1+1M(z+z])/L]-(m+])/2 Hm(lfﬁ;riii7Tk) e » (200-b)




= kM/2L
20w

Br(2+21) = Re{g(z+zy)} . (200-c)

M is the Fresnel number of the complementary beam defined as

M= 3 s (200-d)

and W, is the spotsize of the beam waist which is located at z=-z;.

In Appendix F we approximate the complementary field by the zero-
zero term of its eigenmode expansion. This approximation is optimized
by minimizing the integral square difference between the actual comple-
mentary field and its truncated series approximation.

Also in Appendix F we justify the claim that without loss of
generality we can assume the phase obstacle to be axially located with-
in the incident (m2in) beam. This is subject to the conditions that
the detector be near the center of the main beam (r, << W(L)) and that
the receiver be in the far field of the main beam.

As shown in this appendix the complementary beam mode expansion
coefficient, v,qs 15 given by

o= etz ye*{ig)
Yoo "J?;wowl(]'A el) alzzits*(zli
i * 2
j {] [ lelegherz1er) } g

and the complementary beam Fresnel number and beam waist location are
given by the solution of the simultaneous equations

Im{a(zy)} = Im{(z7)} (201-b)

and

<|—

X =

en [1-2xy(]]—t-:—)] -1 (201-c)




where

X = Ef;fl;- (201-d) 1
@\Z,
and
2
y = an(zg) (%) : (201-e)

With the complementary beam thus completely specified, we may proceed,
in the manner of the development of Chapter III, to calculate the H
function. The exception is that the expression for the field in
Equation (89-b) is replaced by

E(xaysL) = EL(xa¥sL) : (202-a)

In our case L=0, and the total field assumes the form of the difference
of two gaussian beams:

E(x,y,L) - Eg(x,y,L) =

-a(L+z,) (x24y?) -8(L+zq ) (x24y2)
woa(L+z°)e - w]B(L+z])e
a(zle*(zy) g [ lalzg)4s*(21)1(s/2)
x Wy T Jeerizy) e e (202-b)

This completes the discussion of the modeling of the dirty beam
and the optimization of the field expansion. These results will be
applied in the next section to the calculation of the scintillation
spectrum of a particular dirty beam.

C. Evaluation

The modeling of the previous section was applied in the calcu-
lation of the scintillation spectrum for a particular configuration;
that of a laser beam with a central phase perturbation. The spectrum
resulting from this field configuration was calculated for three tur-
bulence models; homogeneous turbulence with a large outer scale,
localized turbulence with a small outer scale, and a combination of
these two. The detector was assumed to be off-axis.

103




We evaluated the spectrum resulting from thg situation in which a
laser beam with waist spotsize (W,) of 20.6 x 10°° meter was directed
through a dirty window toward a rece1ver approximately one kilometer
distant. The beam waist was located one meter inside the window, and
the beam was assumed to have propagated in free space until 1t passed
through the window into the turbulent atmosphere. The phase and dia-
meter of the spot on the window were chosen so that its receiver plane
diffraction pattern consisted of a dark spot approximately one meter in
diameter. These parameters were respectively u=5.336 radians and é=.917
x 107° meter. The values of these variables were deduced by numerically
calculating the receiver plane diffraction patterns of obstacles of
various phases and diameters. Although this procedure supplied the
receiver plane fields as required by the general formula for the scin-
tillation spectrum, the computations were lengthy and time consum1n?
Therefore we resorted to the approximation of the complementary field

as outlined in the previous section.

The routine of the previous section gave, for the complementary
beam, a waist spotsize, Wy, of 3.146 x 10~ meter and a beam waist
loc tion, =27, of -.408 meter. For the Helium-Neon laser (A=.6328 x
10' meter) lhe complementary and ma1g beam Fresnel numbers were
respectively 2.04 x 103 and 4.75 x 10°, and the receiver plane spot-
sizes were Wi(L) = .64 meter and W (L) = 9,79 meters. The parameters

of interest are i1lustrated in F1gure 19.
/mm BEAM
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Figure 19--Sketch of transmitter plane fields.
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With the beam waist locations and spotsizes for the main and com-
plementary beams determined, the fields required (see Equation (202b))
in the calculation of the H function, and hence the spectrum, were
specified. In calculating the H_function (Equation (89b)) a point
detector at a general location, r=rj,, was assumed.

A digital computer was employed in performing the path and fre-
quency integrations of Equation (92). For the path integral a single
eight or 32 point Gaussian quadrature [95.96,975 routine was used.
Composite integration [98] using eight point Gaussian quadrature
routines was used for the frequency integral. A listing and brief
discussion of this program is contained in Appendix G.

Figure 20 shows the spectrum resulting from the dirty beam for
an outer scale, Ly, of 100 meters and the detector positioned at r, =
(0,.88m). This spectrum is indistinguishable from the spectrum of a
clean gaussian beam (see Figure 14 in Chapter III). Little effect of
the beam being dirty was to be expected because of the extreme distance
of the detector from the diffraction pattern of the phase obstacle
(ro/W1(L)=1.4), and because the detector was still close to the axis
of the main beam (rg/Wy(L)<<1).

In Figure 21 we present the spectrum resulting from the same
conditions as for Figure 20 except with the detector located at rg=
(0,.44) (ro/Wi(L)=.7). The low frequency behavior, which is character-
ized by the break point in the vicinity of w/wy = 107", is the same as
that shown in Chapter III for the off-axis detector. In this case
however, the low frequency behavior was due to the detector being off-
axis to the complementary beam, not the main beam.

The spectrum resulting from a different turbulence distribution
is presented in Figure 22. In this case the outer scale was one meter
and the detector location was the same as in Figure 21, however the
turbulence structure parameter was specified as

cﬁ(z) = (%;)CE e.z(%;) s QLT (203)

where z|8 was 10 meters. This turbulence strength distribution would
be apprOpriate for a situation in which all the turbulence was confined
to a 10 meter thick region, i.e., boundary layer at the transmitter.

From the discussion in Chapter III of the spectrum differential
path contribution we deduce that the complementary beam (because of
the off-axis detector) interacts more strongly with the turbulence
localized near the transmitter than does the main beam. This thought
is reinforced by the order of magnitude difference between the low fre-
quency portion of the spectrum in Figure 22 (due primarily to the
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complementary beam) and the portion of the spectrum to the immediate
left of the Fresnel breakpoint (due to the main beam).

A more realistic model of the turbulence field would contain
homogeneous turbulence as well as a boundary layer at the transmitter.
This would correspond to the situation in which the laser beam was
being directed between two aircraft. In fact, to be totally realistic,
we should include a boundary layer at the receiver. However, the dif-
ferential path contribution plots of Chapter III have shown the insen-
sitivity of the scintillation spectrum to such a turbulence distribu-
tion. Therefore the receiver plane boundary layer can be ignored.

Figure 23 shows the spectrum resulting from a combination of
localized and distributed turbulence strengths. For this case the
turbulence field model used was

-z(L
op(x) = C2 {c 3 (’m){nz + (1.077/L4;)21711/68

+ B[nz + (1.077/L4 )‘?]'”/6 sBEoTEN (204)
02 S

where the outer scales, Ly and Lgo, were respectively one and 100
meters, the e™' point of the IOCAQized turbulence was ten meters and

the weights o and 8 were chosen subject to the restraint
A 1 ol (205
cL o " '

The restriction of Equation (205) was imposed merely to facilitate
direct comparison of Figure 23 with the previous results of this
chapter and Chapter III. It requires the path integral of the tur-
bulence strength to be a constant. The turbulence model of Figure 22
also satisfies Equation (205). For the spectrum in Figure 23 we chose
g=.05. Equation (205) then gave a=95, for a ratio of roughly three
orders of magnitude between the turbulence strength in the boundary
layer and that in the distributed turbulence. Also indicated in
Figure 23 are the two outer scale and two Fresnel breakpoints which are
due to the two turbulence strength distributions. This figure is
illustrative of the increased sensitivity, of the dirty beam scintil-
lation spectrum, to an inhomogeneous turbulence distribution.

Shown in Figure 24 is the spectrum resulting from a different

combination of localized and distributed turbulence. For this case
we used
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for a ratio of about three orders of magnitude between the localized
and distributed turbulence strengths. Also shown in this figure are
some typical experimental spectral data (indicated by the points)
derived from the ALP program (run 7 of flight 72). The experimental
spectra were calculated from data obtained by directing a laser beam
through an aircraft window towards another aircraft one kilometer dis-
tant. The beam waist, _located one meter inside the window, had a
spotsize of 20.6 x 10-6 meter. Figute 24 demonstrates the ability of
the dirty beam model to predict the low frequency breakpoint, if not
the slopes, which are found in the experimentally obtained spectra.

This concludes the analysis of the temporal scintillation spec-
trum of a dirty gaussian beam.

D. Summary and Conclusions

This chapter has consisted of two basic parts. The first part
was devoted to developing a model of a dirty laser beam, i.e., a laser
beam blemished in a spatial sense. In the second part the scintilla-
tion spectrum of a specific dirty laser beam was calculated. The
analysis showed the scintillation spectrum of the dirty laser beam to

be sensitive to turbulence localized in the vicinity of the transmitter.

An example of this localized turbulence would be the turbulent boundary
layer near an aircraft fuselage. The combination of dirty laser beam
and localized turbulence gave rise to the low frequency effects
described in Chapter III.

A model of the dirty laser beam was developed in Section B. The
spatial corruption of the laser beam was modeled as arising from the
beam's being transmitted through a window whose transmission function
was unity except within a small axially located region where the phase
of the incident beam was shifted s1ightly. Using Babinet's Principle
the equivalent fields were expanded, within the transmitter plane, in
a series of eigen-modes of the free space wave operator. This expan-
sion enabled the receiver plane fields to be written down immediately
by inspection.
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The phase and diameter of the phase obstacle were assumed to have
been chosen a priori and an optimized expansion was developed which
minimized the integral square error between the actual complementary
field and its truncated series approximation. This optimization scheme
was used to approximate the complementary field by its lowest order
eigen mode so that, essentially the dirty beam consisted of the weighted
sum of two gaussian beams.

Section C of this chapter dealt with a computer evaluation of the
scintillation spectrum of a particular formulation of the dirty gaussian
beam. Analyses were provided for three different index of refraction
spatial spectra: 1) homogeneous turbulence with a large outer scale, 2)
localized turbulence with a small outer scale, and 3) a combination of
these two. The third turbulence distribution is appropriate when the
laser beam originates from an aircraft. Experimental evidence [87]
supports this assumption of a turbulent boundary layer typified by
outer scales on the order of one meter or less. The results of the
evaluation showed that the scintillation spectrum of a dirty beam dis-
plays behavior similar to that of a clean laser beam with an off-axis
detector. In addition, it was demonstrated that the scintillation
spectrum of a dirty beam can display increased sensitivity to inhomo-
geneous turbulence strengths.

This completes the analysis of the scintillation spectrum of a
dirty gaussian beam. Although the model developed herein was a simple
one, we have shown it to qualitatively describe a much broader class of
situations. In practice, an actual laser beam may be expected to con-
tain a much more complicated spatial noise component. However, we have
demonstrated that the scintillation spectrum is largely independent of
the actual structure of this spatial noise.

In the next chapter we shall summarize the work presented in this

and the preceding chapters, and present additional discussion and com-
ments.
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CHAPTER V
SUMMARY AND DISCUSSION

A. Summary and Conclusions

The effort described herein was aimed at developing a simplified
formula for temporal scintillation spectra and applying it to the
analysis of the scintillation spectrum of a dirty, i.e., spatially
corrupted, laser beam. The major accomplishments of this work were:

1) the derivation of a general but very compact expression
for the temporal scintillation spectrum of an arbitrary
extended source,

2) interpretation of the scintillation spectrum formula in
terTs of a phase grating model of the index of refraction
field,

3) asymptotic and numerical calculation of spectra for a
gaussian beam with an off-axis detector,

4) modeling of a spatially blemished laser beam, and

5) qualitative but not exact quantitative agreement between
theoretically predicted and experimentally obtained
scintillation spectra.

Use was made of the so-called Extended Huygens Fresnel integral
to derive a formula for the temporal scintillation spectrum of an
arbitrary source. This expression was in terms of the second order
spatio-temporal statistical moments of spherical waves. Expressions
for these statistical moments were derived by the method of smooth
perturbations, the weak turbulence approximation was employed, and
various observations made, to produce the final expression for the
spectrum. This final formula for the scintillation spectrum was in
terms of the free-space receiver plane fields of an unspecified
extended source, and in terms of an extended receiver. A phase grat-
ing model of the atmospheric turbulence field provided an interpre-
tation of this expression.

The general formula was used to derive an expression for the scin-
tillation spectrum of a clean laser beam with an off-axis point detec-
tor. A thorough asymptotic evaluation of this expression, valid for
arbitrary beam Fresnel number, was provided and numerical results
were given from a computer evaluation for a typical gaussian beam.
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> As a result of the analysis it was shown that, by moving the
A detector off-axis to the beam, an additional breakpoint or peak
(depending upon the relationship of the detector and beam axis with
respect to the wind direction) was introduced in the spectrum at a
frequency below the Fresnel breakpoint.

1 The dirty laser beam was envisioned as arising from the propaga-
. tion of an initially clean gaussian beam through a window and then

1 into the turbulent atmosphere. The window's transmission function

: was assumed to be unity except within a small axial region in which

i the incident field was shifted slightly in phase. Babinet's principle
was used to calculate the equivalent transmitter plane field which was
then expanded in a series of eigen modes of the free space wave opera-
tor. This expansion enabled the calculation of the free space receiver
b plane field, as required in the general formula, by inspection rather
] than by performing the diffraction integral over the transmitter plane
3 field. The series approximation to the transmitter plane field was

L truncated. A procedure therefore was given which optimized the

j expansion.

This modeling procedure was applied to the description of a par-
ticular dirty beam and the resulting expression was evaluated numeri-
cally on a digital computer. The results showed the dirty beam scin-
tillation spectrum to be sensitive to turbulence in the vicinity of
the transmitter despite the fact that the beam Fresnel number was very
large. Specifically, the sﬂectrum displayed a low frequency outer
scale dependent behavior 1ike that of a clean gaussian beam with an
off-axis detector. It was demonstrated that this particular model of
a dirty laser beam qualitatively predicts the scintillation spectrum
of a much more complicated dirty gaussian beam.

B. Discussion

The general formula for the temporal scintillation spectrum is
of significant worth because of its simplicity, flexibility, and easy
interpretation. Its principle utility is in predicting the spectrum
for complicated extended source fields (for example the field of a
laser with cassegrainian optics, or a spatially noisy laser beam) and
for complicated receiver apertures. With this formula it is possible
therefore to easily predict the scintillation spectrum under realistic
conditions rather than the highly idealized situations which other
analyses presume.

The major 1imitation of our formula is its restriction to the
weak turbulence regime. Thus one of the suggestions for future
analytic work concerns its generalization to the strong turbulence
regime. There are two methods by which this problem may be attacked.
First, expressions for the spherical wave statistical moments could
be found which are valid within the multiple scattering domain.
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Second, an heuristic derivation, in the manner of Section E, Chapter
Iii uslng a phase grating model of the turbulence field could be
attempted.

Another topic of further analytical effort could be the consider-
ation of the detector location as being a random function of time.
This 1s equivalent to the laser pointing direction being a random
variable. Under the assumption of an appropriate statistical behavior
for the detector location, it should be possible to determine the
effect upon the measured temporal scintillation spectrum.

Throughout this paper we have assumed the spatial noise structure
of the initial laser beam to be non-periodic. Perhaps a more realistic
model of a dirty laser beam should also contain a certain amount of
periodic spatial noise. This situation would be encountered when the
laser beam is passed through a window and is multiply reflected at the
two surfaces.

For future experimental effort we have a number of suggestions.

The easiest experiment to perform would be aimed at verifying
the predicted low frequency behavior of the spectrum due to an off-
axis detector. This should be a simple method of determining the
outer scale of turbulence.

In case the laser beam is being aimed by a pointer-tracker, it
would be interesting to calculate the temporal power spectra of the
servo system error signals.

Finally, we suggest a closely controlled experiment in which the
source field is perturbed in a known manner. The resultant data
should provide information on the routinely encountered problem of
a dirty laser beam.
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APPENDIX A
THE EXTENDED HUYGENS~FRESNEL INTEGRAL

This appendix is devoted to a discussion of the application
of the Green's function technique to the problem of propagation with-
in a randomly inhomogeneous medium. In the Titerature this general-
1zed Green's function technique is commonly referred to as the
Extended Huygens-Fresnel Principle.

It can be demonstrated [100] that at o?tica1 frequencies
(wavelengths much shorter than the inner scale of turbulence)
polarization effects are negligible. We are therefore justified
in employing the scalar form of the wave equation.

[v2+kZn2(R)JE(R) = o, (A1)

where the index of refraction is a random function of position. We
now propose the existénce of a Green's function such that

[v2+k%n2(R)JG(R,R') = -4né(|R-R'). (A-2)

B*Rleft-muitipIying Equation (A-1) by G(R,R') and Equation (A-2) by
E(R), subtracting the two resulting equations, and integrating over
the scattering volume we obtain

| RCRR )92E(R)-E(R)9%6(R.R')]
. 4vadl' E(R)S(|R-K'|) = 4nE(R') . (A-3)

Figure 1 11lustrates the ?comatry of interest. Point Py denotes the
source point and Py the field point, I and £' the surfaces bounding
:ae sca:tnring volume v and N the outward directed unit normal to

e surface.

If the first and second partial derivatives of G and E are

single valued and continuous on £ and ' we can make use of Green's
second identity, which when applied to Equation (A-3) yields

mz




e —r 5 0 A TS i O A S AL e i S0t b o

- 2

Figure A-1--I1lustration of variables pertinent to
Green's function technique.

ER) = 5 [ [6(REVEM-ERERRIA a. (a-4)

The component of the gradient operator in the direction normal to the
surface we shall denote as

W o). =20 (A-5)
so that Equation (A-4) may be written

E®) = 4 | ope EER) S ER-ER 2p6RRDIA  (ae6)

Assuming that E(R) Satisfies the Sommerfeld Radiation condition [101],
so that the integral along :' can be neglected Equation (A-6) becomes
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E(R') ={-;L@§—ﬁ- Eg—ﬁ)ds, (A-7)

where in the interest of notational simplicity we have dropped the
explicit dependence of E and G upon R and R'.

For the field of a point source

. kR
ER) = S (A-8)

the partial derivative normal to the surface 1 is
3E _ el - 1) 3R
aN " E("‘ %) 3 . (A-9)

If we assume R >> 1/k, i.e., the surface ¢ is many wavelengths
removed from the point source at Po® then we have

13 R) 3R .

N ~ ikE(R) N (A-10)
Using the notation

aR - —A . 3 -

N R*Z, (A-11)

in which the circumflex accent denotes a unit vector, we have

%ﬁ% -ikE(R)R - z . (A-12)

We now claim [41] that the generalized Green's function can be
expressed as

(KIRR* [+9(R.R")

6. = ;
e e (A-13)

where y is a complex function arising from propagation through the
inhomogeneous medium. The perturbation, y, to the field of a
spherical wave is obtained by solving the scalar wave equation
(Equation (A-1)) for the Green's function, G, rather than for the
field, E. However, for the purposes of this discussion, we need
only to bound the magnitude of y. This task is easily accomplished
by inspecting y within the geometrical optics domain (/AL < 2,).
Under this condition we find that [41]
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WRR) = ik [ my(s)as (A-14)
where

s= [R-R']|
'and we have used Reynold's convention [102] on the index field

n(R) = n,(R) +<n(R)> = n(R) + 1.

The generalized Green's function as given by Equations (A-13) and
(A-14) can be shown to satisfy the homogeneous wave equation (A-1)
if the term proportional to vny is neglected. (The polarization
term [100] in the wave equation, which is a function of vny, was
neglected in obtaining Equation (A-l).)

Now the partial derivative of the Green's function is given by
36 _ 1)3s ., 9
m [(“‘ 5 s)iﬂ* ‘5?{] ' (A-15)

For s >> 1/k Equation (A-15) is

9 9 9
36 % ikg [Sﬁ“}fﬁﬁ] : (A-16)

Within the geometrical optics domain

'}F%’i’%& n, (s). (A-17)
Since
H]; %Vﬁl v[ny(s)] << 1, (A-18)

and %%-N 1, Equation (A-15) becomes

= -IGRE) S - 2, (A-19)
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where we have defined

3s
aN

=-5 -2,

With Equations (A-12) and (A-19) the expression for the field
at p, becomes

E®) = - & [ 6@RIE@ @2 - $-2)an. (A-20)

If we make the paraxial approximation, i.e., restrict our attention
to small angles with respect to the axis of propagation, we can
approximate the obliquity factor [103] and the Green's functions
respectively by :

A A

ReZ -s.zxd 2

and

4 ik|R-R" |[+¥(R,R")
G(R,R') & & r

With these approximations Equation (A-20) becomes

ER') = %}ff Em)elkIR-R' [*(RR") o (A-21)

Equation (A-21) is the final result of this appendix.

Although in the preceding discussion we restricted our attention
to the case in which y was purely imaginary, it is in general complex.
This approximation was merely a device to enable the neglect of the
term involving the partial derivative of y. The actual expression
for ¢y is obtained by solving the scalar wave equation for the gener-
alized Green's function. This Green's function is simply the field
(which has been perturbed in phase and magnitude due to propagation
through the turbulent atmosphere) of a point source. An approximate
expression for the complex phase perturbation, y, is derived by
Tatarski [52].




Equation (A-21) is actually more general than it would seem
from our derivation. This formula states that the field at R' is
a_iven merely by the convolution of the source field, at the surface

', with the generalized Green's function. Stated another way, the
field at R' is due to the linear superposition of the elementary
wavelets originating at the plane R.




APPENDIX B

DERIVATION OF THE SPHERICAL WAVE FIRST ORDER
PERTURBATION SPATIAL SPECTRUM

In this appendix we shall supply the missing steps between Equations
(45) and (46) of Chapter II. The beginning point is Equation (45) which
relates the spatial spectrum of the complex phase perturbation y to the
spatial spectrum of the index fluctuations v;

IT ei(xixi+xéyi) o

5 (o) [ofo [ et

]SKZ.QL;t) &

[("i"‘)z*(yi-Y)z 4 (x-X,-)2+(y-y,-)2 (xi-xi)2+(yi-y1)2
% 2(L-z) 2z 2L
(B-1)
If Eq. (B-1) is now multiplied by
=i(kyXx3+k5y7)
dkydkp 2 1X17%2Y1 (8-2)

(2n)2

and integrated over x, Xxj, ¥, and yj from -» to =, the left hand side is

dK]dKz ] o
L.H.S. = 2 I dXiI dy-i [I d¢(KinKé'L;t)

- 4w - -

i(Kixi+Kéyi)-i(K]xi+K2yi)
e

X (B-3)

Interchanging orders of integration gives
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T 1 1xi(ri-nl)
L.H.S. = dkqdky II dO(Ki,Ké,L;t) i}_[” dxq e

® iy!(ks=-x,)
1 b o il s
X {2?[@”1 : J

which is

= dK]dKz JJ d@(Ki’Ké’L;t)G(Ki-K])G(Ké-KZ)

-Q0

or finally
L.H.S. = d@(K] ,Kz,L;t)

Equation (B-1) is therefore

2 N
d¢(K],K2,L;t) = dK.ldKz E Io [-__z' (‘z-) d\)(K]’KZQZ;t)

=00

©o ©

T(kIxtely)=i(kx1+coyt)
% —1§-f[dxdy [[dx.dy. P b e o b -
4n 1

-00 -0

ik

+
X @ 2(L-z) ez 2L

; [(Xi-X)z+(yi-y)2 (x-x;)2+(y-y;)2 (Xi-xf)2+(yi-y1)%]

(8-7)

The x, xi integrals only are




R s e

x1-x)z (x-x4)2 (Xi-xi)z]

(
L i(xq - -

- i(kix=-k1%7)
p %; I-.dx Ijbdxi e i, (B-8a)

Gl

1
_T_)_z L- % 2L

12 2 2 2 12 1 2
[ 2x1x+x -2xx1+x1 X -2x1x1+x1 ]
(B-8b)

E A Gt s
(" "By [ ) 1. "%

-ikqx{ 1k - -———]
TT‘) rd1 *1 M-zy = 2 (8-6¢)

2x X+x =2XX
‘ r' hc-'x [—2'(1_——',— _E_l]

The exponent of the x integrand only is

é :
: ikx. ik, ikx 3
: 2 1k 1 1 i =
F 8 [ 2(L- 25] % zx[é(L-z) T t'x: ] - (B-9)

This is of the form Ax2-2xB. Completing the square and performing the
x integration gives the following:

- -B/A)2
r dx eAx2-2xB . e-Bz/AJ dx eN(x-B/A) (B-10)

= E e'Bz/ A

The x, x{ integrals are then
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X X
%'-ei 2—1— 7 EE'_) [zfigt[zh]’é I:DdX-i e-ix]x]'
x.2 x2-2xx : Fi f e ¢
e"‘[z(dzy - 1] e—i—)-"'gf = [;‘_+ = 'T]{]
(B-11a)
i(L-z)xiK]' X 1'z(L-z)n<]'2 2 T 3.)
% [ZﬂL[z)n];’ i S O %—,;erdx{ il B
(B-11b)
| i(L-z)xge]  i2(L-2)ei
e I P

It is easily seen that the y, y{ integrations give similar results;

1(L-Z)yiké iZ(L-Z)Kéz

L [—L—szit[z "]‘5 e L Lot s(.cz' ; %wz) (B-12)

so that Equation (B-7) is

2 1L %
k_ z_ ;
d@(K] ,Kz,l.;t) = dK]dKz 2 JO ld-fz (%) IIdV(Ki,Kz.Z;t)

(8 [ efeg - £ ) oot - o)

i(L-z , . iz(L-z) , 2 2
. e“(t"l(xvq*virz) - 2kt (k) +e2) (B-13)
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Performing the «' integrations then gives the final answer;

L

d¢(x] ,Kz,l.;t) = jk | dz dv(%' K1s %Kz.z;t)

0

fil+2) = =" efit-z) L 2
TRy
X e e (B-14)

which is simply Equation (46) of Chapter II.
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APPENDIX C

THE WEAK TURBULENCE APPROXIMATION

This appendix is devoted to a description of the conditions under
which we are justified in making the weak turbulence approximation as
it is employed in Section D of Chapter II.

The weak turbulence approximation requires that

lafs]8] << 1

where

and

+ 1st(r

DISCUSSION OF o

we can express a as

o = 2k2L2 IJdZ

X Fn(nc] Ny soL)

-ty Ty 9 =y [
raif rz,r) + D (r raify=r.

- D (F'-?
+2 [Cx(r -r

’ (C‘l)

s = % [0(Fy-F3030) + By(Fy-7430:0)] (c-2)

'3t)

2

3‘lr-l|"r' ;T) D (rz 497' DT)]
rgiTyasT) + Gy 2’1)

3.r 2.t) 1CX5(Fé-F;;F}-FE;r)] . (c-3)

From the results of Chapter II, Section C, viz. Equation (76),

:J;/zdz JZZ g J‘V gzjz“")ap}

i(1-2)k-(rq- =Z)ke(ry- .
: (1-2)k-(ry-ry) R ei(l z)k-(ry r4)|
C-4)
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Since the p integrand is non-negative (F, is a power spectrum) we have

443 2k2L2 Jl “d? [] 2 91(1-2)?. (F]-Fz) +1 - ei(]'Z)E'(F3‘F4)J
0

X Jodp Blaeasot) (c-5)

Using the relationship between the two and three dimensional index of
refraction spectra,

J;dp Fn(kysk2spL) = % on(ky,x2,0) (c-6)

and making the change of variable
u=1-12z

gives for Eq. (C-5)

1
a < 2mkeL j] dc ¢ (ky,x2,0) J du
0

; [1' ; eiu.:-(n-rz) s e‘lun-(r3-r4)] e

Changing the x variable of integration to polar coordinates, assuming
isotropic turbulence, and performing the angular integration yields

- 1
a < 4n2k2L I de k 8, () I du
0 0

x [1 - Jg(ukpyp) + 1 - JO(UKD34)] R




p12 = 1M val

and

034 = |*3- Tyl

Now for the von Kirmdn form of the index of refraction spectrum,

o (x) = .033 c2L2(romn) 2 VE (c-10)
we have

I:dx K Qn(K)[1'JO(UKp]2)] =
= .033 ¢ {I;d" [x2+(1.077/L,)21 1178

; I;d.: <[<24(1.077/L4)277 11/ Jo(u.cpm)} : (c-11)

The right hand side of this equation is easily put into the form

-5/3 -
033 ¢ (‘—L%U-) {de x(x2+1)711/6

* y-]/z I;dx x]/Z(XZ,H)‘]]/s Jo(xy) &y} s (c-12§)
where
up
y =107 1% , A=)

()
and we have made use of the change of variable x = KL°/1.077.
The first integral in the above expression yields a Beta function [73]

and the second integral is a Hankel transform [104]. Performing these
integrations results in
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T

N i

Jodn K ’n(‘)[]'do(uK°12)] =

5/6
2 (1.077Y%/3 1(s > 7K 6(¥)
.033 ¢ (—Lo—) 45k [1 -2 —25751%/5 o (C13)

where Kg ¢ is the modified Bessel function of the second kind and order
5/6. N@ ?equire the separation to be much smaller than the outer scale,

Mg by s

so that the right hand side of Equation (C-13) can be approximated [105]

as
-5/3 5/3
2 (1.077 r(s5/6) r(1/6
033 Cp (T;,—) 2RCHAT T gAY (%)

or

5/3
up
r
033 ¢2 3Gy (—2-—'2) : (c-14)

With these results, inequality (C-9) gives for a,

‘i 'y 011573 p34\°%/3

1
X I POE L S (C-15)
0
or finally
5/3 5/3
9_ 2 2.2 I(1/6 P12 P34 "

The separations, pij, are bounded by

£ AL

Pij %
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where %, is the gnner scale of turbulence. For a Helium-Neon laser
(A = .6328 x 10 meter), a one centimeter inner scale, and a one

kilometer range we obtain
5/3
a < 5.384 x 1016 Cﬁ(p$é3 + ,,31) L (c-17)

Therefore for 1015 C% < 1 we can employ the weak turbulence approxima-
tion.

DISCUSSION OF 8

With Equations (72), (74) and (76) in the text, B is expressed as

282 ﬁd?{[:)/zdz [szp + ‘ﬁ/zdz fz(]-Z)dp} Fp(kqsk200L)

ice[z(ry-r))+c i(1-2)x- (rq-r, i(1-2)x(r,-r.
; [z(r}-r3)+ V][e (1-2)k+(ry-ry) ? e1( 2)x+(ry-r3)

™
]

i(1-2)k* (r1-rq)-i2 i(1-2)c* (ro-ra)+i2
e (1-2)k+(ry-r3)-i2y - (1-2)k*(ro-rg)+ v] : 1)
where
2
y = (z-zz-p%/4) %E— S (c-18b)

Now B is maximum for zero time lag(t=0) and zero receiver plane
separation (r{-r;=0) so that

o e £

i(1-z)k-r i(1-2)k-r.
4 [e ", . 23

’ (c‘lg)

i(1-2)kery5-i2y i(l-z):-F24+1zy]
e -
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where ¥y; = ry-Tj.

Further, g8 is maximized by setting the separations F}j equal to zero:

8 5 ak2L2 ﬁ& fl’zdz Izzdp . f:/zdz JZ(]'z)d;} F_(x70kp06L)

2
X {1 - cos [(2-22-02/4) L%]} : (c-20)

Little error is incurred by dropping the p dependence of the cos
function and extending the upper limits on the p integrals to infinity

(see Appendix D) to obtain

8 5 amcd [[dx I;dz 8 (K7 +k2,0) {1 . cos[dlil& Kz]} . (c-21)

Changing the « variable to polar coordinates, assuming isotropic turbu-
lence, and performing the angular integration gives

1

B 5 8r2k2L r;dz « & (x) Iodz {1 - cos[ﬁlﬁl& xz]} (c-22)

With the identity

1
1 - cosx = x [ du sin ux (C-23)
0

inequality (C-22) becomes

o 1
B X 8r2k2L I dx k On(tc) J dz [E-(l-rzﬂ: "2]
0 0
1
x | du sin [F_z 1-2)L KZ] < (c-24)
folu o fo MR

or
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1 1
B 5 8n2KeL f dz [—L—Lz ’;z L] f du
0 0

X J;dl( K3 oy (x)sin [u _Z_(.]_'kl)i Kz] . (c-25)

For :he von Karmén index of refraction spectrum, as in Equation (C-10),
we find

1

1 s
5 .033 ; 8:2KL | dz [’ - L] Iodu
0

x Iodx S0e2+(1.077/L)17 178 sin [u -zl .<2] . (c-26)

A stronger inequality results if the outer scale is set to infinity
(1.077/L°=0);

1 . ]
g <033 ¢ AL | az [ﬂ‘—sz-L-] [ au

0 0

X dex x'2/3 sin [é ZilﬁllL Ké]
0

1 ko)
5 < .033 ¢ 4r2kPL [ ¢z [Z—U—kz-)i] f du
0 0

dx x sin

"r -5/6 [UHJ':_Z).LX]
0

where we have made use of the change of variable

Performing the x integration [106] yields




1 1
B < .033 CZ 4x2k2L j dz [z Loz L] [ du
0 0

5.
o 0] e e (380 (c-29)

or

g < .033 C% 4x2k7/611/6 r(1/6) cos (%%)

1 g
X I dz 25/6(]-2)5/G j du u /6 " (c-30)
0 0

The u integral gives the value 6/5 and the z integral is a Beta function
[73]. Finally we have

2
B < .022 C§ wKT/6LIVE 3 cos 32 MUBIRUII/EL . (c-3m)

From Tatarski [21], the log-amplitude variance for a spherical wave with
an infinite outer scale of turbulence is

b (c-32)
so that
B < 402 (€-33)
e

Inequalities (C-17) and (C-33) constitute the results of this
appendix. These expressions state that we are justified in employing
the weak turbulence approximation in the development of Chapter II if

5.384 x 103 2L 5,5/ + 03"%) << 1

and

2

<<
X 1
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APPENDIX D
DEPENDENCE UPON LARGE OUTER SCALES
In this appendix we discuss the approximations involved in going
from Equation (88) to Equation (89) in Chapter II.
The scintillation spectrum is expressed by Eq. (88).

Sp(u) = 2k2L2 { I;/Zdz jzzdp + I:/zdz J:“-z)dp}

X ”d? Fn(l('l .Kz.pL) [ZNG(N-:'.V)]

X IH(Z.p.F.w) - H*(Z.p.-:.W)Iz ’ (0'1.)

where

H(Z.p l;lw) =
-1(1-2-p% nz

e o) o g (7 - LLEE) gamy . (0-10)

We will show that under a reasonable set of circumstances, the
p dependence of the # function can be suppressed and the limits on
the p integrations extended to infinity. First we shall demonstrate

the approximations for high spatial frequencies and then for low
spatial frequencies.

To simplify the discussion which follows, we adopt the following
notation:

Hy = H(ZypsioW) (D-2a)

H. = H(Zypy=koW) : (D-2b)

The square modulus term in Equation (D-1a) is then given by
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|H,-H*|? = Ideme":‘F E(F . L.(T‘(_'_Zl K) Ex(7) |2

| [T eme(F L2 )

5 Locz p it . - e
| -z Ude(F) plicee E(F (e K) E*“”’]

X [}d?h(?)e'i;;F.E*(?)E(F + 51%151-2)]
KZ £ S
el Ud?w(?)E'i"'r (7 - L2 ) em]

X Udrwme"?‘F e(rEx(F + L“rzl")] . (@)

For high spatial frequencies (x >> 2n//AL) the exponential terms
involving p oscillate so rapidly with respect to the other terms in
the expression that we may replace them by their average integral
value, zero. Within the high frequency region then

|Hy-HA|% = [He|2 + |H_|2 : (0-4)

and the dependence upon p disappears from this term. The onset of
this region is at roughly

2

that is
K~ 2n//AL . (D-5)

However, under the assumption of isotropic turbulence, the two dimen-
sional index of refraction spectrum has a breakpoint[57] at
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kol ~ 27 (D-6)

beyond which the spectrum decreases rapidly. So, for high spatial
frequencies, F, is very small beyond the point

%QLNZW

p " E<<< 1 - (D-7)

Therefore we may, with little error, extend the upper Timit on the p
integrals to infinity to obtain

1/2 2z 1 2(1-2)
j dz ] do + J dz J do b F, (xq skps0L)
a dg " ity o

or

X [H(2,0,%,w)-H*(2,0,-,w) |2
=0 L o * - 2
= L op(x) »x2,0) fodz |H(2,0,% W) -H*(2,0, W) | , (D-8)

where we have made use of the relationship between the two and three
dimensional index of refraction spectra;

[;dp Fn(K] ,ncz,pL) =% Qn(K],Kz,O) : (D-9)

Equation (D-8) is the desired result of this appendix. We have
Justified this approximation for high spatial frequencies (x>>2n//iL).
It will now be demonstrated that Equation (D-8) is valid at lTow fre-
quencies as well.

Now recall that the two dimensional index of refraction spectrum,

Fhs is small beyond the point xpL ~ 2. Therefore the frequencies for
wnich Fn is significant are given by

kpl < 2n ’ : (D-10)
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or
(xpL)? < (2n)2

or
(kp)2L s P : (p-1)

l
!
The left-most term in Inequality (D-11) is merely the p dependence of | 1
the H function (Equation (D-1b)). Since the p dependent term of the 1 3
H functions is much less than m within the region where F, is signifi-
cant, i.e., low spatial frequencies, we can drop this term altogether.

The H function therefore becomes § T
-i(1-2)Lk2 RLiNd 3 1 ]
H(z,x 2 2k — = dcer of— L{1-2)k
sKsW) = e drw(r) e E{r - E*(¥)

(D-12)
For low spatial frequencies such that
k << 2m/VAL

the field translation term in the expression for the H function is
bounded in the following manner:

L(1- (2 i
( kz)ﬁ «<g /:_L = /AL . (D-13) { 4
'
For well behaved (free space) receiver plane fields, i.e., those vary- |
ing slowly over a lateral distance on the order of a fraction of the !
Fresnel zone, VAL, the square modulus term in Equation (D-la) can be !
written }.
: )
|H+-Hj|2 x 4¢% sin? [(l-z) %ﬁ—] (D-14a) | |
3
or further
H,-#*[2 ~ ac? |(1-2) & e (D-14b)
|+ = n r4 é—k- K ’

where
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C= J dr i w(r) |E(M)|? 2 (D-15)

Under most cases of interest (receiver pupil, w, smaller than a
Fresnel zone, vAL) the C function is a very weak function of « for
k<2n//AL. Hence the low frequency dependence of the modulus squared
term is «#. This fourth power dependence upon spatial frequency
strongly suppresses any contribution to the scintillation spectrum
due to low spatial frequency atmospheric inhomogenieties. For the
Kolmogorov (infinite outer scale) model of the igdex of refraction
field the low frequency dependence of F, is «~8/3. Even for this
model the x4 dependence of the square modulus term will cause the
scintillation spectrum to be highly insensitive to low spatial fre-
quency index of refraction inhomogenieties.

With the foregoing arguments the scintillation spectrum is expressed

as
Sp(w) = 4n2k2L dez Qn(lc] ,KZ.O)G(m-:°V)
] —_— —_—
X J dz IH(z,x,w)-H*(z.-x,w)l2 . (D-16a)
0
where
H(z,k,wW) =
‘i‘]'Z!L |<2 s
e K [arumelr E(F : L—(%ﬂ:) E*(F) . (D-16b)

These expressions are identical to Equations (89-a) and (89-b).

Q.E.D.
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APPENDIX E
DIFFRACTION OF AN ARBITRARY FIELD BY A PHASE GRATING
Within this appendix we develop a mathematical description of the
fields diffracted by a weak phase grating.
We assume the same geometry as in Figure 8 of Chapter II; a phase
grating of period 2n/|x| and orientation x/lxl located in some plane

Z such that O<z<L. The weak phase grating 1s defined in terms of its
transmission function

i .
dip ecos (¥ +F) . i
where  |e|<<1.

Keeping only the first two terms in the series expansion of Equation
(E-1) ylelds

e T — E_‘l?‘? e-‘l.K-'F
Tk yr) ¥ 1 +14ecos(ck °r) =1+17%e ti7e (E-2)

Now assume an arbitrary field to be incident upon the grating from
the left. At z=2" the field is

E(F)Iz_ , (E-3)

and at z=z" the field is

1 ink T
ER| e 1 G EM) e (E-4)

where

¢ = (e (E-5)

The receiver plane field is determined by performing the Fresnel
diffraction integral over the field within the plane z=z";
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T

ik
(r2-2F-F'+r'2)
ik(L-
Bl ol Z)['“‘ ][ars(r)| o )
L 2n(L-2) zt
(E-6)
Combining Equations (E-4) and (E-6) yields
ikr'2
ik(L- 1
EF)| =e ( z)[:iﬁ—] e R IdFE(r) (E-7)
L 2n(L-2) =-] z

x e2(L-2) k

.1_'.‘_ {rZ- 2F .[F % ngL-z) E]

Sym?o11cal]y performing the integration gives the receiver plane
fields

2
i x 7' -in (L‘Z)
eik(L z) g ink 7 e s E(F'- ng:;-z) 'E) ! (E-8)

e e
n=-1

This expression for the principal diffracted fields (minus one, zeroth,
and plus one) of a weak phase grating is the result of this appendix.
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APPENDIX F
DETAILS OF THE DIRTY BEAM MODEL

The objectives of this appendix are twofold. First we shall
demonstrate that, with little loss of generality, we can assume the
phase obstacle to be axially located within the beam. Then we pre-
sent an outline of the optimization of the eigen-mode expansion of
the complementary field.

We restrict our attention to the situation in which the receiver
is in the far-field of the main laser beam, (Fresnel number much
larger than unity) and the detector is near the beam axis (rgo<<w(L)).
Under these conditions the scintillation spectrum of the main beam
alone is that of a spherical wave and is therefore insensitive to
the detector location. Now consider the case in which the receiver
plane field consists of the field of the main beam plus the diffrac-
tion pattern of the phase obstacle. As long as the detector is near
the axis of the main beam the scintillation spectrum (of the dirty
beam) will be dependent only upon the relative positions of the
detector and the phase spot diffraction pattern. Therefore we can
assume, without loss of generality, that the phase obstacle (and
hence its diffraction pattern) are axially located with respect to
the main beam.

Now in performing the actual eigen mode expansion of the com-
plementary field, there are two points with which we must concern
ourselves: 1) The phase curvatures (within the z=0 plane) of the
main and complementary fields must be identical (so that the mode
expansion will indeed converge to the actual complementary field).
2) Since we wish to approximate the complementary field by only a
finite number of terms, we must insure a close approximation to the
actual field, i.e., optimize the expansion.

The phase curvature of the complementary field is contained in
%he gﬁighting function of the eigen mode expansion, (see Equations
200

kM/2L 2, 2
© THiM(zez,) 7 (XY)
e : (F-1)

Comparison of this weighting function with that of Equation (194)
shows that for equal phase curvatures (at the plane z=0) we must have
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Im{a(2z,)} = Im{8(2;)} ’
that is

2, (VL2 2y ()2
ML 14(2qM/L)2

. (F-2)

Our optimization procedure 1s based on the minimization of the
integral square error between the complementary field and its truncated
series approximation. The error is defined as

g = ]J |EC(x,y,0)-Ef (x,y,0) |2 dxdy (F-3)
where

c RS ¢

E(X,y,2) = mZO nZO Yo I (%22+27)9,(y,2421) ; (F-4)

By making use of the orthonormality of the mode functions and Equation
(198) for the complementary field we find that Equation (F-3) can be
expressed as

o - jj dxdy |D; (x-xg.y-yg)E(x.y,0)|?

L%II‘? F-5
mzo nso | Mn ; s

The error is then minimized by taking the partial derivative of ¢ with
respect to the complementary beam Fresnel number:

E A ¥
il L lnwit*e 0 o (F-6)

m=0 n=0




The entire problem now reduces to that of solving two simultan-
eous equations (Equations (F-2) and (F-6)) for the complementary beam
waist spot-size Wy and locations z;.

We now proceed with an example of the use of the foregoing com-
plementary field expansion. In the interest of mathematical simpli-
city the complementary field is approximated by only its lowest order
eigenmode. The expansion coefficient of this mode is given by

Yoo * ” dxdy EC(x,y,0) g§(x,21)g4(y»2)) . (F-7)

As has been justified previously, without loss if generality we
can assume the phase object, described by Ds, to be axially located.
That is

Aelv J x2+y? < §/2
Ds(x,y) = . (F-8)
1 3+ elsewhere

Employing Equations (194), (198), (200), (F-7), and (F-8) we obtain

*
g 2 i G(ZO)B (Z-I)
YOO “L:WON][]-A e M] —(_TT(__TG zo B Z-,

; {] ; e-[a(lo)+8*(21)](6/2)2} : e

Application of Equation (F-6) to Yoo Yields, after some lengthy
algebraic manipulations

1+x
X = %-zn [}-ny(Tty)] A (F-10a)
where we have defined
Br(z])
X = m (F'l“)
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and

h Y = au(zg) (%)2 i (F-10c)

A In Equations (F-10) x is seen to be the square of the ratio of the main
beam to complementary beam spotsizes (at z=0) and y the square of the
ratio of the spot radius to the main beam spotsize. Solution of
Equation {F-10a), which at first glance appears a formidable task, is
easily accomplished by an iterative technique;

1

T+x
xn+] = y n 'I-Zyxn(T_—x%) -1 ’ (F‘]‘a)

in which we let

: Xo = y°1 . (F-11b)

Equation (F-11b) for the initial guess for x states simply that (at
3 z=0) the complementary beam spotsize will be on the order of the
‘ radius of the phase obstacle.

From Equation (D-10b) we see that
f B.(21) = X a.(zp) (F-12)
and from Equation (D-2)

B;(z7) = “i(zo) ’ (F-13)

§ Since x is known (from the solution of Equation (F-10a)) and afz,) is ;
5 known, we have two simultaneous equations in the two unknowns, wy and

z]. At this point the complementary beam ( including the mode coeffi-
cien

t, v,o,) is completely specified. Within the transmitter plane the x
total fidld is

E(x,y,0) = E%(X.y.O) (F-14)
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and at the receiver the field is

E(xysL) - Eglxay.L)

This concludes the appendix.




APPENDIX G
COMPUTER PROGRAM LISTINGS
This appendix contains 1istings and brief discussions of the com-
puter programs used to evaluate the temporal scintillation spectrum for
the clean gaussian beam (Chapter III) and the dirty gaussian beam

(Chapter IV) for homogeneous and/or localized turbulence. These pro-
grams are designed to evaluate the expression

sote) |t o L it 2
I (O’O'L)UE IZ(O.O,L) JO z I,"' (2)[ /mo) +

+ ('1.077/1.(;)2]'”/6 X ’H(?. gg. x.w) - H*(z.- %;a-x.ﬁ)lz. (G-1a)

where
2 Xo Yo
-1.(.]'—2).[(9_) +K’.2] 1(&._. + x —
HZ.“—..N\*e 4r [\, ewoA[ /AL,
™ ]
AL(1-2)w/w AL(1-2)«
: EQO S ——2——) E*(xguyo) »  (6-T)

C is a constant defined as

256/37(4/3 ( n ) -
1 C = - cos 75 7| = 48.527 , (G-1¢)
: ""§’§7§‘l 12

U

and f(z) is a longitudinal turbulence strength distribution function.
: For homogeneous turbulence, as in program one,

E flz) =1 . (6-2)
E In program two we used
; f(z) = 100 ¢~100z . (6-3)
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Equation (G=1b) was obtained from Equation (895) in the text by assuming
a point detector,

W(F) - 6('?’?0') ..
For the clean gaussian beam the field, E, in Equation (G-1b) was given
by Equation (194) in the text. The field of the dirty gaussian beam
was given by Equation (202b).
To simplify the programming, use was made of the change of variable

Kz“—l

so that the expression for the spectrum was given by

WaSa(w)

.
.!_L.__!. ¢ -1/2
= dzf de «
(0,0L)a  215(0,0,L) e I; ;

X [(ﬁ;)2+ K+ (1.077/L6)€]-11/5

X [ln(z.g;./:.u) - #(z,- g:.-/.?.w)

: IH(I.%:W‘N) ; H*(z'- ::_o'/;'w) 2] : (6-4a)
where
P i 2 O N )

AT(1- AT(-2)%
x e(&, M T -3-5;;53-5-) E(xgayg) «  (G-4b)
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The numerical algorithm employed in approximating the integrais
in Equation (G-4) was Gaussian quadrature [95,96,97]. This technique
basically involves fitting a Hermite polynomial to the function to be
integrated and integrating the polynomial over the desired limits. To
approximate the integration over the range variable z, a single 32
point Gaussian quadrature routine was used. The 32 point routine as
opposed to a higher order quadrature formula was deemed adequate be-
cause the z integrand was slowly varying. The « integration was approx-
imated by breaking the range into segments thus

o M
J de F(k) % 2 de F(k) : (G-5)

0 i=1 J(i-l)A

and employing an eight point Gaussian quadrature routine on each seg-
ment. In Equation (G-5) the width, a, of the segments was chosen such

that
2
CF (Y L ()
u)o LO 2 Wo
A= (G-6)
1/(w/wg) : (f;) =

and the upper 1imit, M, on the sum was such that the last segment
integrated made a negligible contribution to the integral, i.e.,

Ma

J(M])AdKF(K) :

M-1 (i Ma < 100 . (6-7)
I deF(k) + I dcF (k)

i=1 J(3-1)a (M-1)a

This method of breaking a large integration range into smaller pieces
is commonly called composite or compound integration [98]. The advan-
tages of this technique are a smaller error and the ability to approxi-
mate integrations over infinite or semi-infinite ranges [98].

Listings of the programs used in Chapters III and IV follow. Also
included are listings for the eight and 32 point Gaussian quadrature

subroutines. The notation used in programs one and two is consistent
with that of the text and of this appendix.
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Program one calculates the dirty beam scintillation spectrum for
homogeneous turbulence. To obtain the scintillation spectrum of a
clean beam from this program, the complex variable C2 is set to zero.
The dirty beam spectrum for localized turbulence is calculated by
program two. A linear combination of the results of these two pro-
grams yields the dirty beam spectrum for the combination of homo-
geneous and localized turbulence.
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|  BEST AVAILARLE COPY

C SCINTILLATION SPECTRUM FOR DIRTY BEAM (PHASE OBJECT)
C WITH OFF=AXIS POINT DETECTOR AND LOCALIZED TURBULENCE.
C ZERO=ZERO ORDER APPROXIMATIOM TO DIRT SPOT
OPTIOMNS DP
INCLUDE DQG8B3#DQH8B
EXTERNAL ZINT,EFIELD
REAL 10SO
COMPLEX A,B,BC,AL,BL,C!,C2,EFO,EFIELD
COMMON AL,BL,C!,C2,0MEG,FOMEG!,FOMEG2 ,F1Z,F2Z,EF0,EKSO, WYEO
1,PI,FRES
CALL ASSIGN(6HTMPOUT,0.,6)
CALL FERR(Q)
CALL DEASSN
PI=4,%ATAN(1.)
C POSITION OF POINT DETECTOR
EKSO=0.
WYEO=SQRT(.2)
C DIAMETER AND PHASE OF DIRT SPOT
DEL=.917E-3
PHI=5.333580778
C WAIST SPOTSIZES AND LOCATIONS FOR’ MAIN AND COMPLEMENTARY BEAMS
#0=2C.2E-6
W1=3,146345943E-4
Z0=1,
Z1=.4080236159
C RANGE, OUTER SCALE, AND WAVELENGTH
EL=1.E3
ELO=1.
4 ALAM=,6328E-6
FRES=SQRT (ALAM*EL)
FELOP=1,077/(ELO/FRES)
C AA=N/L
] AA=ALAM/ (PI*HQ*WO)
; C BB=M/L
; BB=ALAM/(PI*W1*xW1)
A=ALPHA(ZO)
A=NO*WOXCMPLX( 1., AAX*Z0)
A=l./A
C B=BETA(Z1)
B=W1*W1*CMPLX(1.,EB*Z1)
B=1./B
BC=CONJG(B)
C AL=ALPHA(L+Z0)
y AL=HO*WO*CMPLX(1.,AAX(Z0+EL))
4 AL=1./AL
: C CI=ALPHA(L+0)*HO
Cl=ACO*xAL
: C I0SQ=1(0,0,L)**2
? 10SQ=REAL(CI*CONJG(C1)) **2
; C BL=EETA(L+Z1)
1 BL=W | %W 1*CMPLX(1.,BB*(ZI+EL))
BL=1./BL
C C2=EETA(L+Z1)*GANMAQO*W!
C2=(1,=CEXP(=(A+BC)*(DEL/2,)**2))%*(1.=CEXP(CMPLX(0.,PHI)))
C2=C2*A*BC/(A+BC)
C2=2 ,*W | *WO*C2
C2=C2*BL*¥1| 3
EFO=EFI ELD(EKSO, KYEOQ)
C OMEG=0MEGA/OMEGAO
OMEG=1.E=5
FRINC=10.%*(1./8.)
CONST=48,.52728232
DO 50 I=1,57
3 FOMEG 1= (OMEG) *%*2
FOMEQ2=FOMFG1 +FFT (1P %#2

(9]




BEST AVAILABLE COPY |

" TALL DUG32(0. , 1., ZINT ,ANS)
ANS=,S¥ANS*CONST/10S0
WRITE(6,-)OMEG, ANS

50 OMEG=OMEG*FRINC
CALL EXIT
END

c

C THIS IS THE INTEGRAND FOR THE PATH INTEGRATION
FUNCTION ZINT(Z) |
EXTERNAL AKINT |
COMPLEX AL,BL,C1,C2,EFO |
COMMON AL,BL,C!,C2,0MEG,FOMEG!, FOMEG2 ,F12Z,F2Z ,EFO,EKSO, WYEO
1,PI,FRES
Fl1Z=(1.-Z)/(2.%P])
F2Z=F | Z*FRES
AUPR=FOMEG2
IF(FOMEGI .GE. 1. )AUPR=1,/SCRT(FOMEGI)
ZINT=0.
ALWR=0.

5 CALL DQG8(ALWKR,AUPR,AKINT,ANS)
ZINT=ZINT+ANS
ALAR=AUPR :
AUPR=2,*¥AUPR . 4
IFCANS.LT.1.E-5*ZINT)RETURN
GOTOS
END

(o
C THIS IS THE KAPPA INTEGRAND
FUNCTION AKINT(AKP)
COMPLEX AL,BL,C!,C2,EFO,FCN,EFIELD,F6,F7
COMMON AL,BL,C!,C2,0MEG,FOMEG! ,FOMEG2,F1Z,F2Z ,EF0,EKSO, WYEQ
F 1=AKP+FOMEGI
F2=AKP+FOMEG2
F3=FIZ*F1%*.5
k F4=F2Z*SORT (AKP)

Ak sasiOme (g

F5=F2Z*0MEG

F6=EFO*CEXP(CMPLX(0.,F3))

F7=CONJG(F6)
FCN=EFIELD(EKSO~F5,WYEO-F4)*F7
FCN=FCN-CONJG(EFIELD(EKSO+F5,NYEQO+F4))*F6
AKINT=REAL(FCN*CONJG(FCN))
FCN=EFIELD(EKSO~F5, WYEO+F4)*F7
FCN=FCN-CONJG(EFI ELD(EKSO+F5, NYEO=F4) )*F6
AKINT=AKINT+REAL(FCN*CONJG(FCN)) g
AKINT=AKINT*F2#%%(-1.83333333333)*AKP**(~-.5) 3
| i

C

C THIS FUNCTION CALCULATES THE EFIELD AT THE RECEIVER PLANE.
COMPLEX FUNCTION EFIELD(X,Y)
COMPLEX AL,BL,C1,C2 ;
COMMON AL,BL,C!,C2 :
RSQO=X*X+Y*Y

b EFIELD=C1*CEXP (~AL*RSQ)~C2*CEXP (=BL*RSQ)

1 QETURN

ND

o
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PROGRAM TWO

SCINTILLATION SPECTRUM FOR DIRTY BEAM (PHASE OBJECT)
WITH OFF~AXIS POINT DETECTOR.
ZERO-ZERO ORDER APPROXIMATION TO DIRT SPOT
OPTIONS DP
INCLUDE DQGSE1DQG328
EXTEZRNAL ZINT,EFIELD
REAL 10SQ
COMPLEX A,3,BC,AL,BL,C!,C2,EFO,EFIELD
COMMON AL,BL,C1,C2,0MEG,FOMEG 1, FOMEG2 ,F1Z,F2Z, EFO, EKSO, WYEO
1,PI,FRES
CALL ASSIGN(GHTMPOUT, 0. ,6)
CALL DEASSN
CALL FERR(O)
PI=4,*ATAN(1))
POSITION OF POINT DETECTOR
EKS&O.
KYEO=SQRT( .4)
DIAMETER AND PHASE OF DIRT SPOT
~ DEL=.917E-3
PHI=5.333580778

WAIST SPOTSIZES AND LOCATIONS FOR:MAIN AND COMPLEMENTARY BEAMS

H0=20.2E-6
Wi=3,146345943E-4
20=1,
Z1=.4080236159
RANGE, OUTER SCALE, AND WAVELENGTH
El={,E3
ELO=! .E2
ALAM=,6328E-6
FRES=SQRT ( ALAM*EL )
FELOP=1,077/(ELO/FRES)
AA=N/L
AA=ALAM/ (PI*NO*WO)
83=M/L
BB=ALAM/(PI*V1*W))
A=ALPHA(ZO0)
A=HO*HOXCMPLX (] ., AA*Z0)
A=1./A
B=BETA(20)
8= 1 %W *CMPLX(1,,BB*Z1)
B=!./B
BC=CONJG(B)
AL=ALPHA(L+Z0)
AL=WC*WO*CUPLX(1.,AA*(ZO+EL))
AL=1./AL
C I=ALPHA(L+Z0 )*WO
C1=HO*AL

C 10SC=1(0,0,L)#**2

10SQ=REAL (C1*CONJG(C1)) %#2

C BL=EETA(L+Z1)

BL=W1 %N I *CMPLX(1,,BB*(ZI+EL))

SL=1./BL
C2=BETA(L+Z| ) *GAVMAOQ*W|

C2=a(1 .~CEXP(=(A+BC)*(DEL/2.)**2))*(1,~CEXP(CMPLX(0.,PHI)))

C2=C2*A*BC/ (£+BC)

C2=2 . #W 1 *WO*C2

C2=C2*BL*W|

EFO=EFI ELD(EKSO,KYEQ)
OMEG=0MEGA/OMEGAO

OMEG=1,E=S

FRINC=10.%%(1./8.)

CONST=48.52728232

DO 50 I=1,57

FOMEG) =(OMEG) ##2

FOMEG2=FOMEG1+FELOP**2
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CALL DQHB(0.,.2,ZINT,ANS)
ANS=,.5«ANS*CONST/10SQ
ANS=ANS#*EL/10.
WRITE (6 ,— )OMEG, ANS

50 OMEG=OMEG*FRINC
CALL EXIT
END

C

C THIS 1S THE INTEGRAND FOR THE PATH INTEGRATION
FUNCTION ZINT(Z)
EXTERNAL AKINT
COMPLEX AL,BL,Ct,C2,EFO
COMMON AL ,BL,C1,C2, OMEG FOMEG! , FOMEG2 ,F 1Z ,F2Z ,EF0,EKSO, NYEO
1,PIl,FRES
FlZ-(I.-Z)/(Z.*PI)
F2Z=F 1Z*FRES
AUPR=FOMEG2
IF(FOMEG1.GE. 1. JAUPR=1./SQRT(FOMEG! )
ZINT=0.
ALWR=0.

5 CALL DOG8(ALKR,AUPR,AKINT,ANS)
ZINT=ZINT+ANS
ALWR=AUPR
AUPR=2.*AUPR
IF(ANS.LT.1.E=-5*ZINT)GOTO!10
GOTO5

10 ZINT=ZINT*EXP(-2%100. )
RETURN
END

c

C THIS IS THE KAPPA INTEGRAND
FUNCTION AKINT(AKP)
COMPLEX AL,BL,C!1,C2,EFO,FCN,EFIELD,F6,F7
COMMON AL, BL Ci, C2 OVEG FOMEGI FOMEG2 ,F1Z,F22Z, EF0,EKSO, WYEO
FI-AKP+FOMEGI
F2=AKP+FOMEG2
F3=F1Z*F1%.5
F4=F2Z*SQRT(AKP)
F5=F2Z*OMEG
F6=EFO*CEXP (CMPLX (0.,F3))
F7=CONJG(F6)
FCN=EFI ELD(EKSO-F5, NYEO=F4) *F7
FCN=FCN=-CONJG(EFIELD(EKSO+F5, NYEO+F 4) )*F6
AKINT=REAL(FCN*CONJG(FCN))
FCN=EFIELD(EKSO-F5,KYEQO+F4)*F7
FCN=FCN-CONJG(EFIELD(EKSO+F5,WYEO~F4))*F6
AKINT=AKINT+REAL(FCN*CONJG(FCN))
AKINT=AKINT*F2#*%(~-1,83332333333)%AKP**(=.5)
gETURN

ND

C THIS FUNCTION CALCULATES THE EFIELD AT THE RECEIVER PLANE.
COMPLEX FUNCTION EFIELD(X,Y)
COMPLEX AL,BL,C1,C2
COMMON AL,BL,C1,C2
RSQ=X#*X+Y*Y
EFIELD=C1#*CEXP(~AL*RSQ)=C2#CEXP (~BL*RSQ)
g&gURN
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EIGHT POINT GAUSSIAN QUADRATURE SUBROUTINE

SUBROUTINE DQG8

PURPOSE
TO COMPUTE INTEGRAL(FCT(X), SUMMED OVER X FROM XL TO XU)

USAGE
CALL DQG8 (XL ,XU,FCT,Y)
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT

DESCRIPTION OF PARAMETERS
XL =DOUBLE PRECISION LOWER BOUND OF THE INTERVAL.
XU -DOUBLE PRECISION UPPER BOUND OF THE INTERVAL.
FCT =THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION
SUBPROGRAM USED.
Y =THE RESULTING DOUBLE PRECISION INTEGRAL VALUE,

'REMARKS
NONE

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X)
MUST BE FURNISHED BY THE USER.

METHOD
EVALUATION IS DONE BY MEANS OF 8-POINT GAUSS QUADRATURE
FORMULA, WHICH INTEGRATES POLYNOMIALS UP TO DEGREE 15
EXACTLY. FOR REFERENCE, SEE
HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS, AND
MATHEMATICAL TABLES,EDITED BY M. ABRAMOWITZ AND I. A. STEGUN
U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON D.C. 42
PAGES 887,888,919 43
44
46
47
SUBROUTINE DQG8 (XL, XU,FCT,Y) :g
50
DOUBLE PRECISION XL, XU, Y, A, B, C, FCT gé
A=.SD0* (XU+XL) 53
B=XU-XL
C=,48014492824876D0*B
Y=,50614268145188D=1*(FCT(A+C)+FCT(A-C))
C=,39833323870681 *B
Y=Y+, 11119051722668D0*(FCT(A+C)+FCT(A=C))
C=,262766204958 16*B
Y=Y+, 15685332293894D0*(FCT(A+C)+FCT(A=C))
C=.9171732124782D~1*B
Y=B*(Y+,18134189168918DO* (FCT(A+C)+FCT(A~C)))
e
N

c
C
c
c
c
C
c
Cc
(o}
c
c
c
C
C
c
C
c
c
c
c
C
c
c
c
c
C
c
C
C
c
C
C
C
C
C
C
C
C
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THIRTY-TWO POINT GAUSSIAN QUADRATURE SUBROUTINE

c SUBROUTINE DCG32
c 14
. e PURPOSE 15
b g TO COMPUTE INTEGRAL(FCT(X), SUMMED OVER X FROM XL TO XU) 16
17
c USAGE 18
c CALL D@G32 (XL,XU,FCT,Y) 19
¢ PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT 20
c 21
c DESCRIPTION OF PARAMETERS 22
¢ XL -DOUBLE PRECISIOM LOWER BOUND OF THE INTERVAL. 23
c XU -DOUBLE PRECISION UPPER BOUND OF THE INTERVAL. 24
c FCT  =THE NAME OF AN EXTERNAL DOUBLE PRECISION FUNCTION 25
c SUBPROGRAM USED. 26
g Y ~THE RESULTING DOUBLE PRECISION INTEGRAL VALUE. 27
28
€ REMARKS 29
c NONE 30
c 3l
c SUBROUTINES AND FUNCTION SUBPROGRAYS REQUIRED 32
c THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT(X) 33
g MUST BE FURNISHED BY THE USER. 34
3
¢ METHOD 3
c EVALUATION IS DONE BY MEANS OF 32-POINT GAUSS QUADRATURE 37 ]
c FORMULA, WHICH INTEGRATES POLYNOMIALS UP TO DEGREE 63 38
c EXACTLY. FOR.REFERENCE, SEE 39 .
c HANDBOOK OF MATHEMATICAL FUNCTIONS WITH FORMULAS, GRAPHS, AND40 g
c MATHEMATICAL TABLES,EDITED BY M. ABRAMOWITZ AND I. A. STEGUN
c U.S. GOVERNMENT PRINTING OFFICE, WASHINGTON D.C. 4
¢ PAGES 887,€88,519 43
{2 44
c 46
c 47
SUBROUTINE DQG32(XL,XU,FCT,Y) 48
C 49
c 50
1 DOUBLE PRECISION XL, XU, Y, A, B, C, FCT 51
52
A=,5D0* (XU+XL) 53
B=XU-XL 54
_ C=.49863193092474D0+8 55
4 Y=.35093050047350D-2% (FCT (A+C)+FCT( A=C)) 56 .
: C=.49280575577263D0+B 57 4
' Y=Y+.8137197365452D=2#%(FCT( A+C) +FCT(A-C)) 58
C=.48238112779375D0+8 59
Y=Y+, 12696032654631D= 1% (FCT(A+C)+FCT(A-C)) 60
C=.46745303796886D0*B 61
Y=Y+, 171359314565 10D~ 1% (FCT(A+C)+FCT(A=C)) 62
C=.44816057788302D0%8 63 1
YaY+.21417949011113D= 1% (FCT(A+C)+FCT(A=C)) 64
C=.42468380686628D0+B 65
Y=Y+.2549902963 1188D=1# (FCT(A+C)+FCT(A=C)) 66
C=.39724189798397N0*B 67
YaY+.29342046739267D- 1% (FCT(A+C)+FCT(A-C)) 68
C=.36609105927014D0*B 69
3 Y=Y+.32911111388180D=1%(FCT(A+C)+FCT(A=C)) 70
E: C=.33152213346510D0#B 7
; Y=Y+.36172897054424D= 1% (FCT (A+C ) +FCT(A=C) ) 72
C=.29385787862038D0*B 73
Y=Y+.39096947893535D~ 1% (FCT( A+C)+FCT(A=C)) 74
: C=.253449954466 | | DO*B ™
i YaY+.41655962113473D=1#(FCT(A+C)+FCT(A=C)) 76
4 C=.21067563806531D0*B 7
r Y=Y+.43826046502201D= 1% (FCT(A+C)+FCT(A=C)) 78
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C=,16593420114106D0*B
Y=Y+,45586939347881D= 1 #(FCT(A+C)+FCT(A=C))
C=, 11964368112606D0*B
Y=Y+,46922195540402D- 1% (FCT(A+C)+FCT(A=C))
C=,7223598079139D=1+B
Y=Y+.47819360039637D- 1 * (FCT(A+C)+FCT(A=C))
C=,24153832843869D~1%8
Y=Bw(Y+.48270044257363D~1*(FCT(A+C)+FCT(A=C)))
EE'!I)"JRN

N

79
80
81
82
83
84
85
86
87
88
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